
2. The Argand diagram

Definition 2.1. A complex number z is an expression of the form
z = x+ iy, where x and y are real numbers.

For example

2 + 3i and π + 13i

are complex numbers.

Definition 2.2. If z = x + iy is a complex number, so that x and y
are real numbers, x, denoted Re z, is called the real part of z and y,
denoted Im z, is the called the imaginary part.

Thus 2 is the real part of 2 − 3i and −13 is the imaginary part
of π − 13i. It is customary, and certainly convenient, to visualise a
complex number as being a point of the Argand diagram, or the
complex plane. We put the complex number z = x+ iy at the point
(x, y). We can think of a real number x as a complex number whose
imaginary part is zero. Thus real numbers correspond to the x-axis of
the Argand diagram. We say a complex number is purely imaginary
if its real part is zero. Imaginary numbers have the form iy, where y
is a real number and the purely imaginary numbers correspond to the
y-axis of the Argand diagram.

Definition 2.3. If z1 = x1 + iy1 and z2 = x2 + iy2 are two complex
numbers, their sum, denoted z1 + z2, is

(x1 + x2) + i(y1 + y2).

In words, add the real and imaginary parts. For example,

(2− 3i) + (π + 13i) = (2 + π) + (−3 + 13)i

= (2 + π) + 10i.

In terms of the Argand diagram we just add the corresponding vectors.

Definition 2.4. If z1 = x1 + iy1 and z2 = x2 + iy2 are two complex
numbers, their product, denoted z1z2, is

(x1x2 − y1y2) + (x1y2 + x2y1)i.

In practice the way to compute the product of two complex numbers
is just to apply the usual rules of arithmetic and use the rule i2 = −1
every time we need to get rid of a power of i. For example,

(2− 3i)(π + 13i) = (2π − (−3) · 13) + (2 · 13− 3 · π)i

= (2π + 39) + (26− 3π)i.
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One can justify all of the formal rules from the definitions (this is a
somewhat tedious and uninformative exercise):

(z1 + z2) + z3 = z1 + (z2 + z3); z1 + z2 = z2 + z1; z1 + 0 = z1; z1 + (−z1) = 0

(z1z2)z3 = z1(z2z3); z1z2 = z2z1; z1 · 1 = z1; z1(z2 + z3) = z1z2 + z1z3.

Here z1, z2 and z2 are general complex numbers. The most interesting
identity is the last one, which says you can distribute multiplication
over addition, in the usual way.

Instead of using cartesian coordinates to think about complex num-
bers, instead one can think in terms of polar coordinates. In polar
coordinates the two relevant quantities are the distance r to the origin
and the angle θ to the x-axis, going counter-clockwise.

Definition 2.5. The modulus, or absolute value of a complex num-
ber z, denoted |z|, is the distance of the point (x, y) to the origin.
The argument of z, denoted arg(z), is the angle the vector (x, y)

makes with the x-axis.

The argument is only well-defined up to a multiple of 2π. The prin-
cipal value of the argument, denoted Arg(z), is constrained to lie in
the interval (−π, π]. Note that

|z| =
√
x2 + y2 and Arg(z) = arctan

y

x
.

The modulus of 3 + 4i is 5 and the principal value of the argument of
1− i is −π/4.

Of course we can go backwards, from polar to cartesian:

x = r cos θ and x = r sin θ.

Putting this together, we get

z = r cos θ + ir sin θ.

The most basic property of the modulus is the triangle inequality:

|z + w| ≤ |z|+ |w|,

with equality if and only if either z = 0 or w is a positive real scalar
multiple of z.

Lemma 2.6. If z and w are complex numbers then

|z| − |w| ≤ |z − w|.

Proof. As z = (z − w) + w we have

|z| ≤ |z − w|+ |w|,
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by the triangle inequality. Rearranging, we get

|z| − |w| ≤ |z − w|. �

Note that i is a square root of −1. −i is the other square root of −1.
In some sense the choice of square root is arbitrary.

Definition 2.7. Let z = x + iy be a complex number. The complex
conjugate, denoted z̄, is the complex number

x− iy.

One can use the complex conjugate to write down a formula for the
real and imaginary parts:

Re z =
z + z̄

2
and Im z =

z − z̄
2i

.

There are again a collection of simple identities to do with complex
conjugates,

z + w = z̄ + w̄; zw = z̄w̄; |z̄| = |z|; |z̄|2 = zz̄.

The last expression gives a formula for the multiplicative inverse of
a non-zero complex number

z−1 =
1

z
=

z̄

|z|2
=

x− iy
x2 + y2

.

It follows that one can add, subtract, multiply and divide complex
numbers, in the usual way.

Definition 2.8. A complex polynomial p(z) is an expression of the
form

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

where a0, a1, . . . , an are complex numbers.

A complex polynomial determines a complex function

p : C −→ C,

in the obvious way.
Complex numbers were introduced to solve all quadratic equations.

It is a truly amazing fact that in fact one can solve any complex poly-
nomial equation:

Theorem 2.9 (Fundamental theorem of algebra). If p(z) is a complex
polynomial of degree n > 0 then p(z) has a complex root, that is, there
is a complex number α such that

p(α) = 0.
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Remark 2.10. One of the most striking properties of the Fundamental
Theorem of Algebra is that there is no straightforward way to prove
it using only algebra. Most proofs either use some analysis or some
topology.

The degree of a complex polynomial is defined in the usual way. It
is equivalent to saying the function is not constant. One can use (2.9)
to prove, in the usual way:

Corollary 2.11. If p(z) is a complex polynomial of degree n then there
are complex numbers α1, α2, . . . , αn and a such that

p(z) = a(z − α1)(z − α2)(z − α3) . . . (z − αn).

Example 2.12. The complex polynomial z2 + 1 has roots ±i.

It follows that
z2 + 1 = (z − i)(z + i),

which can of course be checked by hand.
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