17. POWER SERIES EXPANSION AT INFINITY

We have already seen that entire functions are determined by what
happens if |z] is large, if z is going to infinity. This suggests we should
explore what happens at oco.

Definition 17.1. We say that a function f is holomorphic at oo if
the function

18 holomorphic at 0.

Holomorphic at 0 means that there is an open disk centred at 0 and
g is holomorphic on this open disk.

In other words, to understand how f(z) behaves when z = oo we
make the change of variables

1 1
w= - so that z=—.
z w
Suppose that f(z) is holomorphic at oo then g(w) = f(1/w) is holo-
morphic at 0 so that it has a power series expansion

g(w) =" byw" = by + byw + byw? + bgw® + ...,

valid for |w| < R, where R is the radius of convergence.
It follows that f(z) has a power series expansion in descending powers
of z,

= by, by by
=Y S =by+—+—=—+....
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This series converges absolutely for |z| > 1/R and it converges uni-
formly for |z| > r, where r > 1/R.
In theory we can compute the coefficients via a line integral. We

start with a simple computation, which is interesting in its own right:

Example 17.2. If m is an integer then

f m 2mi if m=—1
Z"dz = .
|2|=r 0 otherwise.

There are a number of ways to see this. The first is to quote the big
theorems. If m > 0 then z™ is holomorphic on closed disk of radius
r centred at 0 and so the integral is zero by Cauchy’s theorem. (We
will say that a function f is holomorphic on a subset £ C C if it is
holomorphic on some open subset U containing E). If m < 0 then we

can use Cauchy’s formula. The derivative of 1 is zero and so the only
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thing we have to compute is when m = —1 and the result follows by
Cauchy’s integral formula.
The other is by direct computation (which is particularly easy in this
case). We use the parametrisation
v(0) =re®  where 6 € [0,27].

In this case we have

2w
]{ zMdz :/ rme™iret? 4
|z|=r 0
27 )
— Z-T,erl/ ez(m+1)9 d6.
0

If m +1 # 0 it is not hard to see that the integral is zero, as e
has period 27. If m + 1 = 0 then there is no dependence on r and the
integral is 2mi.

Now we can compute the coefficients. If m > 0 is an integer then we
have

[e.e]

(2)z™dz = % (Z 2—:) 2™ dz
|z|=r lzl=r \ =0
00 bn
= le:rnzzo <2n_m) dz
9 bn
= ib"j{ 2" " dz
=0 |z|=r

= 2'/Tibm+1,

dz

since the integral on the penultimate line is non-zero only if the expo-
nent

m-—n=—1 so that n=m-+ 1.

Thus

1
b, = — f(2)z"dz.

n — .
2me |z|]=r

Example 17.3. The function

1s holomorphic at co.



Indeed, the function

is holomorphic at 0.

Example 17.4. The function

18 holomorphic at oo.

Indeed, the function

:1—|—w2

is holomorphic at 0, as it is the quotient of two polynomials and the
denominator is non-zero at 0.

As g is holomorphic at 0 it follows that g(w) has a power series expan-
sion at 0, which we can compute using the expansion of the geometric
series,

1
— =14 utuP+ud+. .

1—u
so that
2
w
g(w) = 1+ w?
=w® —w' +w® —w® +
Thus

Example 17.5. The Mobius transformation

az+b_
cz+d

f(2),

where ab — be # 0 is holomorphic at oo if and only if ¢ # 0.
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Indeed,

o) =71 (1)

~a(l/w)+b
~o(ljw) +d
a+ bw
c+dw
is holomorphic at 0 if and only if ¢ # 0.
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