
17. Power series expansion at infinity

We have already seen that entire functions are determined by what
happens if |z| is large, if z is going to infinity. This suggests we should
explore what happens at ∞.

Definition 17.1. We say that a function f is holomorphic at ∞ if
the function

g(w) = f

(
1

w

)
is holomorphic at 0.

Holomorphic at 0 means that there is an open disk centred at 0 and
g is holomorphic on this open disk.

In other words, to understand how f(z) behaves when z = ∞ we
make the change of variables

w =
1

z
so that z =

1

w
.

Suppose that f(z) is holomorphic at∞ then g(w) = f(1/w) is holo-
morphic at 0 so that it has a power series expansion

g(w) =
∑

bnw
n = b0 + b1w + b2w

2 + b3w
3 + . . . ,

valid for |w| < R, where R is the radius of convergence.
It follows that f(z) has a power series expansion in descending powers

of z,

f(z) =
∞∑
n=0

bn
zn

= b0 +
b1
z

+
b2
z2

+ . . . .

This series converges absolutely for |z| > 1/R and it converges uni-
formly for |z| > r, where r > 1/R.

In theory we can compute the coefficients via a line integral. We
start with a simple computation, which is interesting in its own right:

Example 17.2. If m is an integer then∮
|z|=r

zm dz =

{
2πi if m = −1

0 otherwise.

There are a number of ways to see this. The first is to quote the big
theorems. If m ≥ 0 then zm is holomorphic on closed disk of radius
r centred at 0 and so the integral is zero by Cauchy’s theorem. (We
will say that a function f is holomorphic on a subset E ⊂ C if it is
holomorphic on some open subset U containing E). If m < 0 then we
can use Cauchy’s formula. The derivative of 1 is zero and so the only
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thing we have to compute is when m = −1 and the result follows by
Cauchy’s integral formula.

The other is by direct computation (which is particularly easy in this
case). We use the parametrisation

γ(θ) = reiθ where θ ∈ [0, 2π].

In this case we have∮
|z|=r

zm dz =

∫ 2π

0

rmeimθireiθ dθ

= irm+1

∫ 2π

0

ei(m+1)θ dθ.

If m + 1 6= 0 it is not hard to see that the integral is zero, as eiθ

has period 2π. If m+ 1 = 0 then there is no dependence on r and the
integral is 2πi.

Now we can compute the coefficients. If m ≥ 0 is an integer then we
have ∮

|z|=r
f(z)zm dz =

∮
|z|=r

(
∞∑
n=0

bn
zn

)
zm dz

=

∮
|z|=r

∞∑
n=0

(
bn
zn−m

)
dz

=
∞∑
n=0

∮
|z|=r

bn
zn−m

dz

=
∞∑
n=0

bn

∮
|z|=r

zm−n dz

= 2πibm+1,

since the integral on the penultimate line is non-zero only if the expo-
nent

m− n = −1 so that n = m+ 1.

Thus

bn =
1

2πi

∮
|z|=r

f(z)zn+1 dz.

Example 17.3. The function

f(z) =
1

zn

is holomorphic at ∞.
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Indeed, the function

g(w) = f

(
1

w

)
= wn,

is holomorphic at 0.

Example 17.4. The function

f(z) =
1

z2 + 1

is holomorphic at ∞.

Indeed, the function

g(w) = f

(
1

w

)
=

1

(1/w)2 + 1

=
w2

1 + w2

is holomorphic at 0, as it is the quotient of two polynomials and the
denominator is non-zero at 0.

As g is holomorphic at 0 it follows that g(w) has a power series expan-
sion at 0, which we can compute using the expansion of the geometric
series,

1

1− u
= 1 + u+ u2 + u3 + . . . ,

so that

g(w) =
w2

1 + w2

= w2 − w4 + w6 − w8 + . . . .

Thus

Example 17.5. The Möbius transformation

z −→ az + b

cz + d
= f(z),

where ab− bc 6= 0 is holomorphic at ∞ if and only if c 6= 0.
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Indeed,

g(w) = f

(
1

w

)
=
a(1/w) + b

c(1/w) + d

=
a+ bw

c+ dw

is holomorphic at 0 if and only if c 6= 0.
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