
12. Conformal maps

Let
γ : (−ε, ε) −→ U

be a differentiable curve in a region U . Let a = γ(0) ∈ U .

Definition 12.1. The tangent vector to the curve γ at the point a
is

γ′(0).

Note that if γ(t) = x(t) + iy(t) then

γ′(0) = lim
t→0

γ(t)− γ(0)

t
= x′(0) + iy′(0).

Proposition 12.2. If γ is a differentiable curve and f is holomorphic
on U then the tangent vector to the curve f ◦ γ at the point b = f(a)
is the vector

(f ◦ γ)′(0) = f ′(a)γ′(0).

Proof. This a variant on the chain rule. Suppose that γ′(0) 6= 0.
We have

(f ◦ γ)′(0) = lim
t→0

f(γ(t))− f(γ(0))

t

= lim
t→0

f(γ(t))− f(γ(0))

γ(t)− γ(0)

γ(t)− γ(0)

t

= lim
t→0

f(γ(t))− f(γ(0))

γ(t)− γ(0)
lim
t→0

γ(t)− γ(0)

t

= f ′(a)γ′(0).

If γ′(0) = 0 it is not hard to check that (f ◦ γ)′(0) is also zero and
the formula is still correct. �

Even though the formula (12.2) looks quite innocuous it has a very
striking consequence. We can think of the tangent vector as starting
at the point a = γ(0) and it points in the direction of the tangent line.

Composing with f moves the starting point to b = f(a). On the
other hand, multiplying by a complex number f ′(a) rescales by the
magnitude and rotates through the argument. So composing with f(z)
rotates all tangent vectors at a to all differentiable curves through a by
the same angle.

Definition 12.3. We say that g : U −→ C is conformal at a point
a ∈ U if for any two curves γ1 and γ2 such that γ1(0) = γ2(0) = a,
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with non-zero tangents at a, the two curves g ◦ γ1 and g ◦ γ2 have non-
zero tangents and the angle between the tangent vectors γ′1(0) and γ′2(0)
is the same as the angle between the tangent vectors (g ◦ γ1)′(0) and
(g ◦ γ2)′(0).

We say that g is a conformal map between two regions U and V
if g is a bijection between U and V and g is conformal at every point
of U .

In short, a conformal map preserves angles. Note that complex con-
jugation z −→ z̄ is almost a conformal map. It preserves the magnitude
of the angle but it changes the orientation.

Theorem 12.4. Let f : U −→ V be a bijection between two regions.
Then f is holomorphic, with nowhere vanishing derivative, if and

only if it is conformal.

We have already seen that if f is holomorphic and the derivative is
nowhere zero then it is conformal. The converse is quite striking but
actually not so hard to prove.

The most straightforward way to check a map is a bijection is to
write down the inverse map.

Example 12.5. The map z −→ z2 is a bijection of the upper half plane
with the region C \ [0,∞).

As z −→ z2 is holomorphic and the derivative is nowhere zero, it
follows that this map preserves angles. If we write

f(z) = u(x, y) + iv(x, y) = x2 − y2 + i(2xy)

then the level curves of u and v are orthogonal in (x, y)-plane, since
the curves u = cst and v = cst are orthogonal in the (u, v) plane.

The map z −→ ez is entire and the derivative is nowhere zero, since
ez is nowhere zero. Thus the exponential map is locally everywhere
conformal. The image of a horizontal line is a half line through the
origin and the image of a vertical line is a circle centred at the origin.
As expected these are orthogonal.

The fact that holomorphic maps are conformal is very useful in the
design of airplane wings. If you take a cross-section of an airplane wing
you get a region in the plane. The performance of the airplane wing is
determined by how air flows around the wing.

To determine this, we need to a solve a system of PDE’s. To attack
this problem directly is quite hard. However, what is important is only
how the air flows over the wing and the only important feature is the
angle of attack.
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The idea is to solve the PDE for one fixed choice of cross-section.
The easiest to solve is the unit disk, since in this case one can exploit
the symmetry of the unit disk.

Now the problem is to transform an arbitrary region to the unit disk
using a conformal map, or what comes to the same thing, a holomorphic
map.

So now the question is which regions U are conformally equivalent to
the open unit disk ∆? At this point topology comes into the picture.

If X ⊂ C is a subset then we say that X is simply connected if X
is path connected and every closed path can be continuously deformed
to a constant map, keeping the endpoints fixed (actually this is equiv-
alent to allowing the endpoints to move, as long as the path is closed).
Informally, think of the closed path as a rubber band. Can you move
the rubber band around until it shrinks to a point?

Open and closed disks are simply connected and so is the upper half
plane and angular regions. An annulus is not simply connected. It is
not hard to check that if U is conformally equivalent to the unit disk
then U has to be simply connected.

Once again this easy necessary condition is in fact sufficient:

Theorem 12.6 (Riemann mapping theorem). Every simply connected
region, except the entire complex plane C, is conformally equivalent to
the unit disk ∆.

We will see later that the unit disk and the whole complex plane are
not conformally equivalent.

We have already seen many instances of (12.6) in the lectures and
in the homework.

Example 12.7. Let

U = { z ∈ C |α < arg(z) < β }
be an angular wedge.

Then U is simply connected. How can we map this conformally to
the unit disk? First note that we can do this in stages. The first stage
is to make the first angle α = 0. This is easy, multiply by e−iα,

z −→ e−iαz.

This has the effect of rotating the complex plane through an angle of
−α. So we are reduced to the situation

U = { z ∈ C | 0 < arg(z) < β }.
The next thing is make β = π. For this we use a power function,

z −→ zp,
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where p is a positive real number. As always, we have to make sense of
the ambiguity and as always we use the principal value of the logarithm.
If

w = zp then logw = p log z.

If we choose the principal value of the logarithm then we get

w = epLog z.

Thus we get a well-defined holomorphic map with nowhere vanishing
derivative on C \ (−∞, 0].

Now we simply take

p =
π

β
.

Thus we reduce to the case where α = 0 and β = π, which is the
upper half plane H. Finally we map this to the unit disk ∆ using a
Möbius transformation. We have to map the real line to the unit circle.
We map 0 to −1, 1 to 1 and ∞ to i and then invert if we have to.

It is possible but somewhat involved to make the definition of simply
connected formal. Fortunately for the complex plane there is an ad hoc
way to get around this.

Definition 12.8. We say that an open subset U ⊂ C is simply con-
nected if U is path connected and the complement inside the extended
complex plane is connected.

To make sense of being connected in the extended complex plane we
use the Riemann sphere.

For example the complement of an annulus has two connected com-
ponents the smaller disk and the complement of the bigger disk.
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