
TAKE HOME MIDTERM EXAM

MATH 120B, UCSD, SPRING 20

You have 24 hours.

There are 6 problems, and the total number of points is 100.

Please make your work as clear and easy to follow as possible. There

is no need to be verbose but explain all of the steps, using your own

words. You may consult the lecture notes and model answers but you

may not use any other reference nor may you confer with anyone. You

may use any of the standard results in the lecture notes as long as you

clearly state what you are using. If you don’t know how to solve the

whole problem answer the portion you can solve.

Please submit your answers on Gradescope by 5pm on Thursday

April 30th.
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1. (3pts) (i) It is wrong.
(ii) It is very unfair to other students taking the class.
(iii) It does not help to learn the material.
2. (17pts) Let γ = γ1 + γ2 be the standard contour and let

f(z) =
1 + z

1 + z3
=

1

1− z + z2
.

Then f(z) has isolated singularities at the cube roots of −1, apart from
−1 itself. Of these only one is in the upper half plane, at eπi/3. The
residue there is

Reseπi/3 f(z) = lim
z→eπi/3

z − eπi/3

1− z + z2

= lim
z→eπi/3

1

z − e5πi/3

=
1

eπi/3 − e5πi/3

=
1

2i

2i

eπi/3 − e−πi/3

=
1

2i

1

sin π/3

=
1

2i

2√
3
.

The residue theorem implies that

∫

γ

1 + z

1 + z3
dz = 2πiReseπi/3 f(z)

=
2π√
3
.

We estimate the integral around γ2, the semicircle of radius R centred
at the origin in the upper half plane. The length of γ2 is L = πR. The
maximum value M of f(z) is at most

|f(z)| = 1

|1− z + z2|

≤ 1

R2 −R− 1
.
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It follows that
∣

∣

∣

∣

∫

γ2

1 + z

1 + z3
dz

∣

∣

∣

∣

≤ LM

≤ πR

R2 −R− 1
,

which goes to zero as R goes to infinity.
On the other hand

∫

γ1

1 + z

1 + z3
dz =

∫ R

−R

1 + x

1 + x3
dx.

As the original improper integral converges it follows that if we let R
go to infinity we get the integral we are trying to compute.
Hence

∫ ∞

−∞

1 + x

1 + x3
dx =

2π√
3
.

3. (20pts) We integrate around the unit circle, using the substitution

z = eiθ so that dθ =
dz

iz
.

In this case

cos θ =
z + 1/z

2
and sin θ =

z − 1/z

2i
.

We have
∫ 2π

0

dθ

(cos θ)4 + (sin θ)4
=

∮

|z|=1

dz

iz((z + 1/z)4/24 + (z − 1/z)4/(2i)4)

=
24

i

∮

|z|=1

z3dz

(z2 + 1)4 + (z2 − 1)4

=
23

i

∮

|z|=1

z3dz

z8 + 6z4 + 1
.

Consider the integrand

f(z) =
z3

z8 + 6z4 + 1
.

This has singularities at the zeroes of

z8 + 6z4 + 1 = (z4 + 3)2 − 8.

We get

(z4 + 3)2 = 8 so that z4 = −3± 2
√
2.
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Now |z| ≤ 1 if and only if |z4| ≤ 1 and so the only singularities in the
unit disk are given by the fourth roots of

2
√
2− 3 ∈ (−1, 0).

These are

αeπi/4; αe3πi/4; αe5πi/4 and αe7πi/4,

where α ∈ (0, 1) is the real fourth root of 3− 2
√
2 ∈ (0, 1).

We calculate residues at these points. All poles are simple. We have

Resαeπi/4 f(z) = lim
z→αeπi/4

z3

8z7 + 24z3

=
1

8
lim

z→αeπi/4

1

z4 + 3

=
1

8

1

2
√
2− 3 + 3

=
1

16
√
2
.

It is clear the other singularities will give the same result. The residue
theorem implies that

∫ 2π

0

dθ

(cos θ)4 + (sin θ)4
=

8

i

∮

|z|=1

z3dz

z8 + 6z4 + 1

= 4 · 16π

16
√
2

= 2
√
2π.

4. (20pts) We integrate over

f(z) =
z3eiz

(1 + z2)2

over the standard contour

γ = γ1 + γ2,

as in Question 2.
We assume that R > 1 so that we capture the only isolated singularity
in the upper half plane at i. As this is a double pole the residue there
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is

Resi f(z) = lim
z→i

d

dz

(

z3eiz

(z + i)2

)

= lim
z→i

(3z2eiz + z3eiz)(z + i)2 − 2(z + i)z3eiz

(z + i)4

= lim
z→i

z2eiz((3 + z)(z + i)− 2z)

(z + i)3

=
−e−1((3 + i)(2i)− 2i)

(2i)3

=
−e−1((3 + i)− 2)

(2i)2

=
1 + i

4e
.

The residue theorem implies that
∫

γ

z3eiz

(1 + z2)2
dz = 2πiResi f(z)

= π
i− 1

2e
.

Next we show the integrals over the semicircle goes to zero as we in-
crease R to infinity. We have

∣

∣

∣

∣

∫

γ2

z3eiz

(1 + z2)2
dz

∣

∣

∣

∣

≤
∫

γ2

|z3eiz|
|(1 + z2)2| |dz|

≤ R3

(R2 − 1)2

∫

γ2

|eiz |dz|

<
πR3

(R2 − 1)2
,

which goes to zero, as R goes to infinity. To get from line two to line
three we applied Jordan’s Lemma.
For γ1 have

∫

γ

z3eiz

(1 + z2)2
dz =

∫ R

−R

x3eix

(1 + x2)2
dx.

Taking the limit as R approaches ∞ we get

lim
R→∞

∫ R

−R

x3eix

(1 + x2)2
dx = π

i− 1

2e
.
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Taking the imaginary part of both sides we get

lim
R→∞

∫ R

−R

x3 sin x

(1 + x2)2
dx =

π

2e
.

As the integrand

x3 sin x

(1 + x2)2

is even, convergence of the Cauchy principal value implies convergence
of the improper integral to the same limit. Thus

∫ ∞

−∞

x3 sin x

(1 + x2)2
dx =

π

2e
.

5. (20pts) Let

f(z) =
(log z)2

(z2 + 1)2
.

We have to choose a branch of the logarithm. We cut the complex
plane along the negative imaginary axis:

V = C \ { iy | y ≤ 0 }.

We then choose the branch

log z = ln |z|+ i arg z where arg z ∈ (−π/2, 3π/2).

This has a pole at 0 and so we integrate around the indented contour

γ = γ− + γ0 + γ+ + γ2,

where γ− goes from −R to −ρ, γ0 goes along the semicircle of radius ρ
from −ρ to ρ in the upper half plane, γ+ goes from ρ to R and γ2 goes
back to −R along the semicircle of radius R in the upper half plane.
Note that the region

U = { z ∈ C | ρ < |z| < R } ∩H,
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has boundary γ. f(z) has isolated singularities at ±i which are both
double poles but only the singularity at i belongs to U :

Resi f(z) = lim
z→i

d

dz

(

(log z)2

(z + i)2

)

= lim
z→i

2 log z(z + i)2/z − 2(z + i)(log z)2

(z + i)4

= 2 lim
z→i

log z(z + i)− z(log z)2

z(z + i)3

= 2
log i(i+ i)− i(log i)2

i(2i)3

=
2πi/2− (πi/2)2

4i3

= π
(4− πi)

16i2

= π
(πi− 4)

16
.

The residue theorem implies that

∫

γ

(log z)2

(z2 + 1)2
dz = 2πiResi f(z)

= 2πiπ
(πi− 4)

16

= −π2π + 4i

8
.

Next we show the integrals over γ2 and γ0 go to zero. As usual we have
to estimate the largest value of |f(z)|. Over γ2 we have

|f(z)| = | log z|2
|z2 + 1|2

≤ (lnR + 2π)2

(R2 − 1)2
.

Thus
∣

∣

∣

∣

∫

γ2

(log z)2

(z2 + 1)2
dz

∣

∣

∣

∣

≤ LM

≤ πR(lnR + 2π)2

(R2 − 1)2
,
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which goes to zero as R goes to infinity. Over γ0 we have

|f(z)| = | log z|2
|z2 + 1|

≤ (2π − ln ρ)2

(1− ρ2)2
.

Thus
∣

∣

∣

∣

∫

γ2

(log z)2

z2 + 1
dz

∣

∣

∣

∣

≤ LM

≤ πρ(2π − ln ρ)2

(1− ρ2)2
,

which goes to zero as ρ goes to zero, since ρ(ln ρ)2 goes to zero.
The integral over γ+ is equal to

∫

γ+

(log z)2

(z2 + 1)2
dz =

∫ R

ρ

(ln x)2

(x2 + 1)2
dx.

Finally, for the integral over γ− we use the parametrisation

z = −x where x ∈ [ρ,R].

In this case

log z = ln x+ πi.

This traverses γ− in the wrong direction, so we flip the sign.
∫

γ
−

(log z)2

(z2 + 1)2
dz =

∫ R

ρ

(ln x+ πi)2

(x2 + 1)2
dx

=

∫ R

ρ

(ln x)2

(x2 + 1)2
dx+ 2πi

∫ R

ρ

ln x

(x2 + 1)2
dx− π2

∫ R

ρ

1

(x2 + 1)2
dx.

Letting ρ go to zero and R go to infinity we get:

2I = −π2π + 4i

8
− 2πi

∫ ∞

0

ln x

(x2 + 1)2
dx+ π2

∫ ∞

0

1

(x2 + 1)2
dx.

Taking the real part gives

I = −π3

16
+

1

2
π2

∫ ∞

0

1

(x2 + 1)2
dx.

We have to calculate the last integral. We use the standard contour.
It is clear that the integral goes to zero over the semicircle, as R goes
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to infinity. There is one pole at i, a double pole. We have

Resi
1

(z2 + 1)2
= lim

z→i

d

dz

(

1

(z + i)2

)

= − lim
z→i

2

(z + i)3

= − 2

(i+ i)3

=
1

4i
.

Applying the residue theorem and dividing by 2 we get
∫ ∞

0

1

(x2 + 1)2
dx =

π

4
.

Thererefore
∫ ∞

0

(ln x)2

(x2 + 1)2
dx =

π3

16
.

6. (20pts) Since we want to calculate an integral over the range [0,∞)
and there is no obvious symmetry, we need to integrate over a keyhole
contour. Let

f(z) =
za−1

(z + b)(z + c)
.

Note that f(z) has poles at −b and −c on the real line. So we need
to put indented contours around −b and −c. We need these indented
contours for both γ+ and γ−,

γ = γ+ + γ− + γ2 + γ0 + γ+
b + γ−

b + γ+
c + γ−

c .

We suppose that the circles around 0, −b and −c all have radius ρ. We
need to pick a branch of the logarithm to define the power of z. We
pick

log z = ln |z|+ i arg(z) where arg(z) ∈ (0, 2π).

f(z) has no poles inside the region we integrate around and so Cauchy’s
theorem implies that

∫

γ

za−1

(z + b)(z + c)
dz = 0.

We now deal with each term separately. First the integral around γ2
the circle of radius R centred at the origin. The length L is 2πR and
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for the maximum value of f(z) we have

|f(z)| = |za−1|
|(z + b)||(z + c)|

≤ Ra−1

(R + b)(R + c)
.

It follows that
∣

∣

∣

∣

∫

γ2

za−1

(z + b)(z + c)
dz

∣

∣

∣

∣

≤ LM

≤ 2πRa

(R + b)(R + c)
,

which goes to zero as R goes to infinity. For the integral around γ0 we
do something similar. The length L is 2πρ and for the maximum value
of f(z) we have

|f(z)| = |za−1|
|(z + b)||(z + c)|

=
ρa−1

(b− ρ)(c− ρ)
.

It follows that
∣

∣

∣

∣

∫

γ2

za−1

(z + b)(z + c)
dz

∣

∣

∣

∣

≤ LM

≤ 2πρa

(b− ρ)(c− ρ)
,

which goes to zero as ρ goes to zero, since a > 0 and the denominator
goes to bc 6= 0.
For the remaining integrals, the branch of the logarithm becomes im-
portant. For the integral above the cut we have

log z = ln x so that za−1 = xa−1.

For the integrals below the cut we have

log z = ln x+ 2πi so that za−1 = xa−1e2(a−1)πi = xa−1e2aπi.

For the integral over γ+ we have

∫

γ+

za−1

(z + b)(z + c)
dz =

∫ b−ρ

ρ

xa−1

(x+ b)(x+ c)
dx

+

∫ c−ρ

b+ρ

xa−1

(x+ b)(x+ c)
dx+

∫ R

c+ρ

xa−1

(x+ b)(x+ c)
dx.
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For the integral over γ− we have
∫

γ
−

za−1

(z + b)(z + c)
dz = −e2aπi

∫ b−ρ

ρ

xa−1

(x+ b)(x+ c)
dx

− e2aπi
∫ c−ρ

b+ρ

xa−1

(x+ b)(x+ c)
dx− e−2aπi

∫ R

c+ρ

xa−1

(x+ b)(x+ c)
dx.

Let I be the Cauchy principal value of
∫ ∞

0

xa−1

(x+ b)(x+ c)
dx.

Thus if we let ρ go to zero and R go to infinity then the integral over
γ+ approaches I and the integral over γ− approaches −e2aπiI (for those
that worry about such things: the Cauchy principal value of both sin-
gular points, the one at −b and and the one at −c exist independently
of each other so that there is in fact no ambiguity of the meaning of
the Cauchy principal value).
Finally consider the integrals over the semircircles around −b and −c.
Since the poles are simple, we can compute the residue and multiply
by the appropriate multiple of πi. At −b we have

Res−b f(z) = lim
z→−b

za−1

z + c

=
(−b)a−1

c− b
.

Thus

lim
ρ→0

∫

γ+

b

za−1

(z + b)(z + c)
dz = −πiRes−b f(z)

= −πi
(−b)a−1

c− b
.

Similarly

lim
ρ→0

∫

γ+
c

za−1

(z + b)(z + c)
dz = −πi

(−c)a−1

b− c

lim
ρ→0

∫

γ−

b

za−1

(z + b)(z + c)
dz = −πie2aπi

(−b)a−1

c− b

lim
ρ→0

∫

γ−

c

za−1

(z + b)(z + c)
dz = −πie2aπi

(−c)a−1

b− c
.

Putting all of this together gives

(1−e2aπi)I =
πi

c− b

(

(−b)a−1 + e2πia(−b)a−1 − (−c)a−1 − e2πia(−c)a−1
)

.
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Thus

e−πia − eaπi

2i
I =

π

2(c− b)

(

e−πia(−b)a−1 + eπia(−b)a−1 − e−πia(−c)a−1 − eπia(−c)a−1
)

.

It follows that

− sin πaI =
π cos πa

c− b

(

(−b)a−1 − (−c)a−1
)

.

Hence
∫ ∞

0

xa−1

(x+ b)(x+ c)
dx =

π cot πa

b− c

(

(−b)a−1 − (−c)a−1
)

.

7. (Extra credit: 10pts) Consider integrating

f(z) =
1

p(z)

around a circle of radius R centred at the origin, where R is large.
Then f(z) has isolated singularities at the roots of p(z), so that f(z)
has finitely many isolated singularities in the whole complex plane. In
particular as long as we avoid one of these singularities we can apply
the Residue Theorem.
On the one hand, the Residue Theorem implies that

∮

|z|=R

f(z) dz = 2πi
∑

a

Resa f(z).

If R is sufficiently large then we capture every isolated singularity and
so the sum on the RHS is constant.
Now consider estimating the integral on the LHS from above. The
length L of the circle is 2πR. If

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

where an 6= 0 then

|p(z)| > |an|
2

Rn

so that

|f(z)| = 1

|p(z)|

≤ 2

|an|Rn
.
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It follows that
∣

∣

∣

∣

∮

|z|=R

f(z) dz

∣

∣

∣

∣

≤ LM

≤ 2R

|an|Rn

≤ 1

|an|Rn−1
,

which goes to zero, as we are assuming that n ≥ 2.
The only possibility is that the sum of the residues of f(z) is zero.
8. (Extra credit: 20pts) Note that

z2m+1 − 1 = (z − 1)(1 + z + z2 + · · ·+ z2m)

In particular the integrand of the improper integral has no singulariti-
ties along the real axis, so that the improper integral converges.
It is also possible to guess the limit as m goes to infinity. If you fix a
real number x ∈ (−1, 1) and let m go to infinity then x2m+1 approaches
zero. On the other hand if x /∈ [−1, 1] then |x2m+1| approaches infinity,
as m goes to infinity.
Thus the integrand approaches the function

g(x) =

{

1− x x ∈ [−1, 1]

0 x /∈ [−1, 1].

Pointwise convergence is clear and in fact one can even establish uni-
form convergence with a little bit of work. The area under the graph
of g(x) is two. So we expect the limit to be 2.
Let

f(z) =
z − 1

z2m+1 − 1
.

We integrate f(z) around the standard contour,

γ = γ1 + γ2.

f(z) has isolated singularitities at the (2m+ 1)th roots of unity, apart
from 1. The ones in the upper half plane are located at

ak = e2πik/(2m+1) where 1 ≤ k ≤ m.
12



The residue there is

Resak f(z) = lim
z→ak

z − 1

(2m+ 1)z2m

=
ak − 1

(2m+ 1)a2mk

=
ak(ak − 1)

2m+ 1
.

The sum of the residues is

1

2m+ 1

m
∑

k=1

ak(ak − 1) =
1

2m+ 1

m
∑

k=1

a2k − ak

=
1

2m+ 1

(

a21 − a2m+1

1− a21
− a1 − am+1

1− a1

)

=
1

2m+ 1

(

a21 − a2m+2

1− a21
− (a1 − am+1)(1 + a1)

1− a21

)

=
1

2m+ 1

(

am+1 + am+2 − 2a1
1− a2

)

=
1

2m+ 1

(

am + am+1 − 2

a−1 − a1

)

=
1

2m+ 1

(

(am/2 − a−m/2)
2

a−1 − a1

)

=
1

2m+ 1

(

(2i)2 sin2 mπ
2m+1

(−2i) sin 2π
2m+1

)

= − 2i

2m+ 1

(

cos2 π
2(2m+1)

sin 2π
2m+1

)

= − 2i

2m+ 1

(

cos2 α

sin 4α

)

,

where

α =
π

2(2m+ 1)
.

Thus the residue theorem implies that

∫

γ

z − 1

z2m+1 − 1
dz =

4π

2m+ 1

(

cos2 α

sin 4α

)

.
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We estimate the integral over γ2. The length if πR and the maximum
value is at most

|f(z)| =
∣

∣

∣

∣

z − 1

z2m+1 − 1

∣

∣

∣

∣

=
|z − 1|

|z2m+1 − 1|

≤ R + 1

R2m+1 − 1
.

Thus
∣

∣

∣

∣

∫

γ2

z − 1

z2m+1 − 1
dz

∣

∣

∣

∣

≤ LM

≤ πR(R + 1)

R2m+1 − 1
,

which goes to zero, as R goes to infinity.
For the integral over γ1 we have

∫

γ2

z − 1

z2m+1 − 1
dz =

∫ R

−R

1

1 + x+ x2 + · · ·+ x2m
dx.

Letting R goes infinity we therefore get
∫ ∞

−∞

1

1 + x+ x2 + · · ·+ x2m
dx = 8α

(

cos2 α

sin 4α

)

.

where
α =

π

2(2m+ 1)
.

As m goes to infinity, α goes to zero and so

4α

sin 4α

approaches 1. As 2 cos2 α approaches 2, the integral approaches 2.
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