MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. We have to compute the sum of the residues of e F'(s).
(a) Note that
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We also have
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(c) Note that
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2. It is easy to see that z — az + b is a biholomorphic map, with
inverse

z—b
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Conversely, let f: C — C be a biholomorphic map. Consider the
behaviour of f at infinity. As f is entire and not constant it must be
unbounded as it approaches infinity.
In particular f must have a singularity at infinity. Suppose that the
singularity is essential. The Casorati-Weierstrass theorem implies that
f approaches every single complex number a € C. This is impossible
as f is a bijection.
Thus f has a pole at infinity. It follows that f is a rational function
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where p(z) and ¢(z) are polynomials. If p(z) and ¢(z) have a common
zero then they share the same linear factor. Cancelling, we may assume

that p(z) and ¢(z) have no common zeroes.
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Suppose that ¢(z) has positive degree. Then ¢(z) must have a zero and
this would be a pole of f(z), which is not possible, as f is entire. Thus
f(2) is a polynomial.

If the degree of f(z) is at least two, then the derivative of f(z) is a
polynomial of degree at least one. But then the derivative has a zero,
which is impossible as f is biholomorphic.

Thus f(z) is a polynomial of degree at most one, so that

f(z) =az+Db,

where a and b € C. a # 0, otherwise f(z) is constant.

3. We have already seen that Mobius transformations give biholomor-
phic maps of the extended complex plane.

Conversely, let f be a biholomorphic map of the extended complex
plane. Suppose that f sends oo to a. If a = oo then let

a: Pt — P!

be the identity. Otherwise let a be the biholomorphic map of the
extended complex plane given by

1
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Then g = ao f is a biholomorphic map of the extended complex plane
that sends oo to co. By what we already proved ¢(z) = az + b. In
particular g is a Mobius transformation. Thus the inverse of g is a
Mobius transformation and so f is a Mobius transformation.

4. Suppose that

frA—A
is a biholomorphic map with fixed point a. Let

a: A — A

be the biholomorphic map

zZ—Q

az) =

Cl-az
so that a(a) = 0. Let § be the inverse of . Then
g=aofof: A— A

is a biholomorphic map that fixes zero. It follows that ¢ is a rotation.
In particular if g has more than one fixed point it is the identity.

Note that b is a fixed point of f if and only if ¢ = «(b) is a fixed point
of g. Thus if f has more than one fixed point then g has more than

one fixed point and so ¢ is the identity. But then f is the identity.
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5. We first do long division to find pw(2). Note that
D= (2422 +2)[(2*+1)(z2 = 1)%] +[22° — 2> +22 - 2).
It follows that pe(2) = 2% + 22 + 2 and
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where the first term is the principal part at ¢, the second term is the
principal part at —i, the last two terms are the principal part at 1, and
a, B, v and J are to be determined.

The first three coefficients are residues. We have
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At 1 we have
223 — 224+ 22 -2
(22+1)(z—1)?

a = Res;

od (222 —22422-2
= lim —
2—1dz 2241
(622 — 224+ 2)(22 + 1) — 22(22% — 22 + 22 — 2)
= lim
z—1 (22+1)2
C12-2
4
_d
2

To find 6 we multiply both sides by z — 1 and then we find the residue
at 1:
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6. Consider the biholomorphic map
a:C— C  givenby  a(z) = R=.

The composition g = h o « is a continuous funcion on the unit circle.
It follows that

( (9) 1 /27r ]_—7"2 (19)d¢

v(r,0) = — e

7 21 Jo 1 —2rcos(¢ —0) + 2

is a harmonic function on the unit disk A with a continuous extension

to the closed unit disk whose restriction ot the unit circle is g.
The inverse of « is the map

B:C—C given by B(z) =

=

As [ is holomorphic the function
u(r,8) = v(r/R,0)

is then a harmonic function on the open disk U with a continuous

extension to the boundary where it is equal to h(Re®™).
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We have
u(r,0) =v(r/R,0)
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Challenge Problems: (Just for fun)

7. (a) Show that every biholomorphic map of U = C—{ay, as, ..., a,},
the complex plane punctured at finitely many points, is a Mobius trans-
formation that permutes the points of

{al,ag,...,an,oo}.
(b) Find the biholomorphic maps of U = C — {0, 1}.
(¢) Find the biholomorphic maps of U = C — {—1,0, 1}.
(d) Find the biholomorphic maps of U = C — {—1,0, 2}.
8. Let f: A — A be a holomorphic map that is not biholomorphic.

Show that if f has a fixed point a and f,, is the nth iterate of f (that
is, compose f with itself n times) then the sequence of points

b f1(0) = f(b)  fab) = f(f(D))

converges to a, for any b € A.



