MODEL ANSWERS TO THE SIXTH HOMEWORK

1. Note that f is not constant by assumption. In particular |f(z)| < M
be the maximum principle.
We first prove this for the unit disk. We have

fiA— A
and f has a zero of order m at 0. Schwarz’s Lemma implies that
1f(2)] < |zl
Consider )
_f
9(2) = =
Then
g A— A
and ¢ has a zero of order m — 1 at 0. It follows by induction that
[f(2)] < [=™.
Further equality holds if and only if
f(z) = Az,

for some scalar A, with || = 1.
Now we use the functions a and £ in lecture 16.

a:z— Rz+a and  [3:z— z/M.

Given

f:U—C such that lf)| <M
let
g=pPofoa: A — A.
As f has a zero of order m at a, g is a holomorphic map with a zero of
order m at 0. By what we already proved

lg(w)] < fw]™.
Apply the inverse of 5 to both sides it follows that
|(f o a)(w)] < M™[w|™.
Pick z € U. If we put




then w € A and a(w) = z. We have

[f(2)] = [f (e(w))]

Now suppose we have equality at some point not equal to a. Then we
have equality for g at some point other than 0. But then

g(w) = Aw™,
for some A of modulus 1. In this case
f(z) = g(w)
= (M"M\w™
M™)\
= o (z—a)™.
2. ¢: A — A is a biholomorphic map taking a to 0. The composition

g=fouy: A— A

is a holomorphic map which has a zero of order m at zero. Thus
lg(w)| < |w[™

by Question 1. If z € A then we may find w € A such that ¥(w) = z.
In this case

[f ()] = | ((w))]
= [g(w)]|
< fw[™

It follows that
|£(0)] < [4(0)™

= [a]™.
3. Suppose that f(z) is nowhere zero. Then the function
p: A—C
given by




is holomorphic on the closed unit disk. Applying the maximum princi-
ple to the closed unit disk we see that |p(z)| achieves its maximum at
a point a on the circle |z| = 1. We have

which is not possible.
Thus f(z) is zero somewhere in the unit disk.

Let
g: A —C
be given by
_ f(2)
Note that

lg(2)] <1 on |z| = 1.
If a is a zero of f then it is also a zero of g and so by Question 2 we
have

4. One direction is clear. If f(z) is a finite Blaschke product then f(z) is
holomorphic on the closed unit disk, so that it is certainly holomorphic
on A and continuous on the closed unit disk and |f(z)| =1 on |z| = 1,
since it is a product of biholomorphic maps of the unit disk to itself.

Now suppose that f(z) is holomorphic on A, continuous on the closed
unit disk and |f(z)| = 1 on the circle |z| = 1. Note that f(z) has only
finitely many zeroes since if it had infinitely many zeroes they would
accumulate on |z| = 1, contradicting the fact that | f(z)] = 1 on |z| = 1.

Let n be the number of zeroes.
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Suppose first that n = 0, that f(z) is nowhere zero on A. We want to
show that f(z) is constant. If not then f(0) =b € A. Consider

g: A—C
given by
z
9(z) = f<b )
Then g(0) = 1 and if |z| = 1 then we have
£ (=)l
l9(2)| =
0]
_ 1
0]
> 1.

Question 3 implies that g(z) has a zero inside A. But a zero of g is a
zero of f, which is not possible.

It follows that f(z) = A is a constant. As |f(z)| = 1 it follows that
Al = 1 so that A\ = €™, where ¢ € [0, 27).

Now suppose that n > 0. Let aj,as,...,a, be the zeroes of f(z),
repeated according to multiplicity. Let

B(z) = (12__;112) (12—_522) <1Z__ainz)

and consider

g: A —C
given by #e)
9(z) = B()

A priori g(z) is a meromorphic function. However, since every zero of
B(z) is matched by a zero of f(z), it follows that g(z) is holomorphic.
Similarly g(z) has no zeroes in the unit disk. Note that ¢g(z) extends
to a continuous function on the closed unit disk and that on |z| = 1 we
have

~~

(=)
2)
_1fG)
BG)|
=1.

902 =

Sy

=

As g(z) is nowhere zero on the unit disk it follows that

g(z) =¢€¥
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by what we already proved. But then f(z) is a finite Blaschke product.
5. There are two ways to proceed. For the first observe that f(z) is a
rational function and so it is a meromorphic function. The denominator
is zero at +1/3i and so f is a holomorphic function on A which extends
to a continuous function on the circle |z| = 1.

If z = €” is a point on the unit circle then

1+ 3(e”)? = [1+3(e*?)]
— 1+ 3(e72)
— |€2i0 + 3|

Thus |f(z)| = 1 on the unit circle. It follows by Question 4 that f is a
finite Blaschke product.

For the second we just find an explicit representation of f(z) as a finite
Blaschke product. The zeroes of f(z) are at

Sl
5~

and g = —
We have
() () (55 (55)
1+\/i§z 1—\/%2 V3 +iz V3 —iz
(v3z —i)(v/32 + 1)
-~ (VB+ia) (V3 —iz)
322 +1
T 3422
= f(2).
6. We first reduce to the unit disk and then we follow the proof of
Schwarz’s Lemma. Consider the function

g(z) = f(32): A — A.

VR

Then
g(£1/3) =0 and  g(%i/3)=0.

We want to calculate the maximum value of |g(0)|. Consider the finite
Blaschke product

z—2\ [(z2+3\ [z—1% z+ 1
me= (1=2) (72) (772) (7).
3 3 3 3

Consider the function




This is a meromorphic function on the unit disk. As g is zero at the
zeroes of B, which are all simple, it follows that h is a holomorphic
function on the unit disk. Consider a circle of radius r € (0,1). If
|z| = r then

1
< -
r
It follows by the maximum principle that

hz) < 2

r

on the open disk of radius r. Taking the limit as r approaches one we
see that |h(z)] <1 on the unit disk. Further equality holds if and only
if h(z) = A is a constant of modulus 1.

In particular |2(0)] < 1 with equality if and only if h(z) = ¢*°. Thus

[£(0)] = 19(0)]
< [B(0)]
1

=D
1

8_17

with equality if and only if
f(z) = e¥B(z/3).

7. We first consider the case zo =7 > 0 and z; = —r. Given f let
g A—C
be the holomorphic map
oo = L=
We have
00) = () = [ L= S0 = 1
= [f(r) = f(=r)|



Note that ¢g(0) = 0 and
o)1 = |12

< SU7E)+17(=2))

< 1.

_ ‘f(Z)—f(—Z)

If we apply Schwarz’s Lemma to g(z) then we get |g(2)| < |z|.
Thus

lg(r) — g(=r)| < lg(r)| + |g(—r)]
<r+r
= 2r.

If we have equality than
|f(2)] > |7 forall  zeA.
Suppose that f(z) is nowhere zero. Then

1
p(z) =
e
is holomorphic on A and
1
p(2)] < -
]

Applying the maximum principle on the circle of radius r we see that

1
Ip(2)] < o
Letting r go to one we get
Ip(z) < 1.
But then
f(2)] =
which is not possible. Thus f(z) has a zero somewhere. As
f(z) = | !

we must have f(0) = 0. Schwarz’s Lemma then implies that f(z) = Az
for some scalar A such that |A\| = 1.

Now suppose zy and z; are general. Let a: A — A be any biholomor-
phic map with inverse § and let w; = a(z), i = 0, 1. If f maximises
|f(20) — f(z1)] then g = f o f maximises

lg(w1) — g(wo)| = [ f(20) — f(21)]-
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Consider the biholomorphic map « of A given by
zZ— 20

Z — —.
1— Zzyz
a sends zg to 0. If we apply a rotation to «(z;) we may assume that
z1 = x is a positive real.
If we use the biholomorphic map
Z—r

z —
1—rz

to move 0 to —r and x to r then we have

T—r
=r so that xr? —2r+ 2 =0.

1—rx
Solving for r gives

2+ 4 — 422 B 1++1— 22
2 N x '
We want the negative square root

_1—\/1—x2

r
T
Thus the maximum value is
2 — 21 — 22 21 — 2
_— where r=|——].
T 1— 2oy

8. (a) There are many possibilities. One is
i(z+1)

11—z
This sends 1 to 0o, —1 to 0 and 7 to —1. So three points of the unit circle
go to three points of the real line. As a Mdbius transformation take
lines and circles to line and circles, it follows that this transformation
takes the unit circle to the real axis. As 0 is sent to ¢ it follows the unit
disk is carried to the upper half plane.
(b) It is convenient to state an auxiliary result that we will use a little
bit later. Consider the extended real line R U {oo}. Given any three
distinct points «, § and v of the extended real line, so that a;, 5 and ~
are either real numbers or oo, there is a unique map

fiRU{o0} — RU {0}
of the extended real line to itself, of the form

ar +b
f(x)_c:v—i-d

where a, b, ¢ and d are real numbers and ad — bc = £1.
8
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We follow the same lines of proof as for the complex number. As the
composition of Mobius transformations is a Mébius transformation we
can prove this in stages. We want to send v to infinity. We may assume
v # 00. In this case we take a =0, b = c =1 and d = —v. From now
on we want to fix oo, so we look at transformations of the form

r—>ar+b

If we put b = o and a = 1 then we send 0 to a. Now we want to fix
both 0 and oco. This means we have a transformation of the form

T — ax

If we put a = [ then we send 1 to 3. We already proved that there is
at most one Mobius transformation with complex coefficients sending
0, 1 and oo to «, B and ~ and so uniqueness is clear. If ad — bc > 0
and we multiply top and bottom by the square root of the reciprocal
we are reduced to the case ad —bc = 1. If ad —bc < 0 by a similar trick
we are reduced to ad — bc = —1.

Let f: H — H be a biholomorphic map. Let

z—1

B(Z):z+1

be the inverse of the Mobius transformation «. Then
g=Pofoa:A— A

is a holomorphic map from the unit disk to the unit disk. If f; is the
inverse of f then gy = fo fyoa is the inverse of g. As gy is holomorphic
g is biholomorphic. It follows that g is a Mobius transformation. From
the equation g = o foa we get f = aogo . But then f is a Mobius
transformation.

Thus every biholomorphic map of the disk to itself is a Mobius trans-
formation. ¢ sends to the unit circle to the unit circle. As a sends the
unit circle to the real axis, it follows that f sends the real axis to the
real axis.

Consider the image of 0, 1 and co. We get three real numbers «, § and
~. There is a unique Mobius transformation which sends 0, 1 and oo
to a, 8 and v. As we already constructed one Mobius transformation
with this property it must be the unique one and so

az+b
f(z)—cz—i-d
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where a, b, ¢ and d are real and ab — bc = +1. Consider
, ai+b
f) = c+d
(ai + b)(—ci+d)
2 +d?
ac + bd + i(ad — bc)
B 2+ d? '
By assumption f(i) € H, so that the imaginary part ad —bc > 0. Thus
ad — bc = 1.
(c¢) If f: H — A is a biholomorphic map of the upper half plane to
the unit disk then foa: A — A is a biholomorphic map of the upper
half plane to itself, where « is the Mobius transformation introduced
in (a). As birational maps of the unit disk are Mobius transformations
it follows that f o « is a Mobius transformation. Precomposing with
the inverse of § and using the fact that the composition of Mobius
transformations is a Mobius transformation, we see that f is a Mobius
transformation.
As f is biholomorphic there is a point a € H mapping to 0. Thus f
must have the shape

zZ—a
z) = .
/() cz+d
The point co must map to a point € of the unit circle. Thus
L Z—a
z)=¢e" )
/() z+d

The factor e obviously corresponds to a rotation. Suppose that we
could find two choices for d, d; and ds, giving fi; and f;. The compo-
sition

fiofiti A — A
is a biholomorphic map that fixes the origin. It is therefore a rotation
and it is then easy to see that d; = ds.
If d = —a then it is easy to see that any real number z = x has the
same distance to a as to —a.
Hence every biholomorphic map of the upper half plane H to the unit
disk A has the form
zZ—a

z —> e where Ima > 0,9 € [0,2m).

Z—a
(d) a is the inverse image of f. The derivative of f is
Fiz) = e
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Thus

It follows that a—a

e = f(0)—;

a

It follows that we can recover ¢ as the argument of the RHS. As the
RHS is determined by f, it follows that we can recover ¢ from f.
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