
MODEL ANSWERS TO THE SIXTH HOMEWORK

1. Note that f is not constant by assumption. In particular |f(z)| < M
be the maximum principle.
We first prove this for the unit disk. We have

f : ∆ −→ ∆

and f has a zero of order m at 0. Schwarz’s Lemma implies that

|f(z)| ≤ |z|.
Consider

g(z) =
f(z)

z
.

Then

g : ∆ −→ ∆

and g has a zero of order m− 1 at 0. It follows by induction that

|f(z)| ≤ |z|m.
Further equality holds if and only if

f(z) = λzm,

for some scalar λ, with |λ| = 1.
Now we use the functions α and β in lecture 16.

α : z −→ Rz + a and β : z −→ z/M.

Given

f : U −→ C such that |f(z)| ≤M

let

g = β ◦ f ◦ α : ∆ −→ ∆.

As f has a zero of order m at a, g is a holomorphic map with a zero of
order m at 0. By what we already proved

|g(w)| ≤ |w|m.
Apply the inverse of β to both sides it follows that

|(f ◦ α)(w)| ≤Mm|w|m.
Pick z ∈ U . If we put

w =
z − a
R

,
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then w ∈ ∆ and α(w) = z. We have

|f(z)| = |f(α(w))|
≤Mm|w|m

=
Mm

Rm
|z − a|m.

Now suppose we have equality at some point not equal to a. Then we
have equality for g at some point other than 0. But then

g(w) = λwm,

for some λ of modulus 1. In this case

f(z) = g(w)

= (Mmλ)wm

=
Mmλ

Rm
(z − a)m.

2. ψ : ∆ −→ ∆ is a biholomorphic map taking a to 0. The composition

g = f ◦ ψ : ∆ −→ ∆

is a holomorphic map which has a zero of order m at zero. Thus

|g(w)| ≤ |w|m

by Question 1. If z ∈ ∆ then we may find w ∈ ∆ such that ψ(w) = z.
In this case

|f(z)| = |f(ψ(w))|
= |g(w)|
≤ |w|m

= |ψ(z)|m.

It follows that

|f(0)| ≤ |ψ(0)|m

= |a|m.

3. Suppose that f(z) is nowhere zero. Then the function

p : ∆ −→ C

given by

p(z) =
1

f(z)
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is holomorphic on the closed unit disk. Applying the maximum princi-
ple to the closed unit disk we see that |p(z)| achieves its maximum at
a point a on the circle |z| = 1. We have

1 =
1

|f(0)|

=

∣∣∣∣ 1

f(0)

∣∣∣∣
= |p(0)|
< |p(a)|

=

∣∣∣∣ 1

f(a)

∣∣∣∣
=

1

|f(a)|
< 1,

which is not possible.
Thus f(z) is zero somewhere in the unit disk.
Let

g : ∆ −→ C
be given by

g(z) =
f(z)

M
.

Note that
|g(z)| < 1 on |z| = 1.

If a is a zero of f then it is also a zero of g and so by Question 2 we
have

1

M
=
|f(0)|
M

= |g(0)|
< |a|.

4. One direction is clear. If f(z) is a finite Blaschke product then f(z) is
holomorphic on the closed unit disk, so that it is certainly holomorphic
on ∆ and continuous on the closed unit disk and |f(z)| = 1 on |z| = 1,
since it is a product of biholomorphic maps of the unit disk to itself.
Now suppose that f(z) is holomorphic on ∆, continuous on the closed
unit disk and |f(z)| = 1 on the circle |z| = 1. Note that f(z) has only
finitely many zeroes since if it had infinitely many zeroes they would
accumulate on |z| = 1, contradicting the fact that |f(z)| = 1 on |z| = 1.
Let n be the number of zeroes.
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Suppose first that n = 0, that f(z) is nowhere zero on ∆. We want to
show that f(z) is constant. If not then f(0) = b ∈ ∆. Consider

g : ∆ −→ C
given by

g(z) =
f(z)

b
.

Then g(0) = 1 and if |z| = 1 then we have

|g(z)| = |f(z)|
|b|

=
1

|b|
> 1.

Question 3 implies that g(z) has a zero inside ∆. But a zero of g is a
zero of f , which is not possible.
It follows that f(z) = λ is a constant. As |f(z)| = 1 it follows that
|λ| = 1 so that λ = eiϕ, where φ ∈ [0, 2π).
Now suppose that n > 0. Let a1, a2, . . . , an be the zeroes of f(z),
repeated according to multiplicity. Let

B(z) =

(
z − a1
1− ā1z

)(
z − a2
1− ā2z

)
. . .

(
z − an
1− ānz

)
and consider

g : ∆ −→ C
given by

g(z) =
f(z)

B(z)
.

A priori g(z) is a meromorphic function. However, since every zero of
B(z) is matched by a zero of f(z), it follows that g(z) is holomorphic.
Similarly g(z) has no zeroes in the unit disk. Note that g(z) extends
to a continuous function on the closed unit disk and that on |z| = 1 we
have

|g(z)| =
∣∣∣∣ f(z)

B(z)

∣∣∣∣
=
|f(z)|
|B(z)|

= 1.

As g(z) is nowhere zero on the unit disk it follows that

g(z) = eiϕ
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by what we already proved. But then f(z) is a finite Blaschke product.
5. There are two ways to proceed. For the first observe that f(z) is a
rational function and so it is a meromorphic function. The denominator
is zero at ±

√
3i and so f is a holomorphic function on ∆ which extends

to a continuous function on the circle |z| = 1.
If z = eiθ is a point on the unit circle then

|1 + 3(eiθ)2| = |1 + 3(e2iθ)|
= |1 + 3(e−2iθ)|
= |e2iθ + 3|.

Thus |f(z)| = 1 on the unit circle. It follows by Question 4 that f is a
finite Blaschke product.
For the second we just find an explicit representation of f(z) as a finite
Blaschke product. The zeroes of f(z) are at

a1 =
i√
3

and a2 = − i√
3
.

We have (
z − i√

3

1 + i√
3
z

)(
z + i√

3

1− i√
3
z

)
=

(√
3z − i√
3 + iz

)(√
3z + i√
3− iz

)

=
(
√

3z − i)(
√

3z + i)

(
√

3 + iz)(
√

3− iz)

=
3z2 + 1

3 + z2

= f(z).

6. We first reduce to the unit disk and then we follow the proof of
Schwarz’s Lemma. Consider the function

g(z) = f(3z) : ∆ −→ ∆.

Then

g(±1/3) = 0 and g(±i/3) = 0.

We want to calculate the maximum value of |g(0)|. Consider the finite
Blaschke product

B(z) =

(
z − 1

3

1− z
3

)(
z + 1

3

1 + z
3

)(
z − i

3

1 + iz
3

)(
z + i

3

1− iz
3

)
.

Consider the function

h(z) =
g(z)

B(z)
.
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This is a meromorphic function on the unit disk. As g is zero at the
zeroes of B, which are all simple, it follows that h is a holomorphic
function on the unit disk. Consider a circle of radius r ∈ (0, 1). If
|z| = r then

|h(z)| =
∣∣∣∣ g(z)

B(z)

∣∣∣∣
=
|g(z)|
|B(z)|

≤ 1

r
.

It follows by the maximum principle that

|h(z)| ≤ 1

r

on the open disk of radius r. Taking the limit as r approaches one we
see that |h(z)| ≤ 1 on the unit disk. Further equality holds if and only
if h(z) = λ is a constant of modulus 1.
In particular |h(0)| ≤ 1 with equality if and only if h(z) = eiϕ. Thus

|f(0)| = |g(0)|
≤ |B(0)|

=
1

34

=
1

81
,

with equality if and only if

f(z) = eiϕB(z/3).

7. We first consider the case z0 = r > 0 and z1 = −r. Given f let

g : ∆ −→ C

be the holomorphic map

g(z) =
f(z)− f(−z)

2
.

We have

|g(r)− g(−r)| =
∣∣∣∣f(r)− f(−r)

2
− f(−r)− f(r)

2

∣∣∣∣
= |f(r)− f(−r)|.
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Note that g(0) = 0 and

|g(z)| =
∣∣∣∣f(z)− f(−z)

2

∣∣∣∣
≤ 1

2
(|f(z)|+ |f(−z)|)

< 1.

If we apply Schwarz’s Lemma to g(z) then we get |g(z)| ≤ |z|.
Thus

|g(r)− g(−r)| ≤ |g(r)|+ |g(−r)|
≤ r + r

= 2r.

If we have equality than

|f(z)| ≥ |z| for all z ∈ ∆.

Suppose that f(z) is nowhere zero. Then

p(z) =
1

f(z)

is holomorphic on ∆ and

|p(z)| ≤ 1

|z|
.

Applying the maximum principle on the circle of radius r we see that

|p(z)| ≤ 1

r
.

Letting r go to one we get

|p(z) ≤ 1.

But then

|f(z)| ≥ 1,

which is not possible. Thus f(z) has a zero somewhere. As

f(z) ≥ |z|
we must have f(0) = 0. Schwarz’s Lemma then implies that f(z) = λz
for some scalar λ such that |λ| = 1.
Now suppose z0 and z1 are general. Let α : ∆ −→ ∆ be any biholomor-
phic map with inverse β and let wi = α(zi), i = 0, 1. If f maximises
|f(z0)− f(z1)| then g = f ◦ β maximises

|g(w1)− g(w0)| = |f(z0)− f(z1)|.
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Consider the biholomorphic map α of ∆ given by

z −→ z − z0
1− z̄0z

.

α sends z0 to 0. If we apply a rotation to α(z1) we may assume that
z1 = x is a positive real.
If we use the biholomorphic map

z −→ z − r
1− rz

to move 0 to −r and x to r then we have
x− r
1− rx

= r so that xr2 − 2r + x = 0.

Solving for r gives

2±
√

4− 4x2

2x
=

1±
√

1− x2
x

.

We want the negative square root

r =
1−
√

1− x2
x

.

Thus the maximum value is

2− 2
√

1− x2
x

where x =

∣∣∣∣ z1 − z01− z̄0z1

∣∣∣∣ .
8. (a) There are many possibilities. One is

α(z) =
i(z + 1)

1− z
.

This sends 1 to∞, −1 to 0 and i to−1. So three points of the unit circle
go to three points of the real line. As a Möbius transformation take
lines and circles to line and circles, it follows that this transformation
takes the unit circle to the real axis. As 0 is sent to i it follows the unit
disk is carried to the upper half plane.
(b) It is convenient to state an auxiliary result that we will use a little
bit later. Consider the extended real line R ∪ {∞}. Given any three
distinct points α, β and γ of the extended real line, so that α, β and γ
are either real numbers or ∞, there is a unique map

f : R ∪ {∞} −→ R ∪ {∞}
of the extended real line to itself, of the form

f(x) =
ax+ b

cx+ d

where a, b, c and d are real numbers and ad− bc = ±1.
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We follow the same lines of proof as for the complex number. As the
composition of Möbius transformations is a Möbius transformation we
can prove this in stages. We want to send γ to infinity. We may assume
γ 6=∞. In this case we take a = 0, b = c = 1 and d = −γ. From now
on we want to fix ∞, so we look at transformations of the form

x −→ ax+ b

If we put b = α and a = 1 then we send 0 to α. Now we want to fix
both 0 and ∞. This means we have a transformation of the form

x −→ ax

If we put a = β then we send 1 to β. We already proved that there is
at most one Möbius transformation with complex coefficients sending
0, 1 and ∞ to α, β and γ and so uniqueness is clear. If ad − bc > 0
and we multiply top and bottom by the square root of the reciprocal
we are reduced to the case ad− bc = 1. If ad− bc < 0 by a similar trick
we are reduced to ad− bc = −1.
Let f : H −→ H be a biholomorphic map. Let

β(z) =
z − 1

z + 1

be the inverse of the Möbius transformation α. Then

g = β ◦ f ◦ α : ∆ −→ ∆

is a holomorphic map from the unit disk to the unit disk. If f0 is the
inverse of f then g0 = β ◦f0◦α is the inverse of g. As g0 is holomorphic
g is biholomorphic. It follows that g is a Möbius transformation. From
the equation g = β ◦ f ◦α we get f = α ◦ g ◦β. But then f is a Möbius
transformation.
Thus every biholomorphic map of the disk to itself is a Möbius trans-
formation. g sends to the unit circle to the unit circle. As α sends the
unit circle to the real axis, it follows that f sends the real axis to the
real axis.
Consider the image of 0, 1 and∞. We get three real numbers α, β and
γ. There is a unique Möbius transformation which sends 0, 1 and ∞
to α, β and γ. As we already constructed one Möbius transformation
with this property it must be the unique one and so

f(z) =
az + b

cz + d
9



where a, b, c and d are real and ab− bc = ±1. Consider

f(i) =
ai+ b

ci+ d

=
(ai+ b)(−ci+ d)

c2 + d2

=
ac+ bd+ i(ad− bc)

c2 + d2
.

By assumption f(i) ∈ H, so that the imaginary part ad− bc > 0. Thus
ad− bc = 1.
(c) If f : H −→ ∆ is a biholomorphic map of the upper half plane to
the unit disk then f ◦α : ∆ −→ ∆ is a biholomorphic map of the upper
half plane to itself, where α is the Möbius transformation introduced
in (a). As birational maps of the unit disk are Möbius transformations
it follows that f ◦ α is a Möbius transformation. Precomposing with
the inverse of β and using the fact that the composition of Möbius
transformations is a Möbius transformation, we see that f is a Möbius
transformation.
As f is biholomorphic there is a point a ∈ H mapping to 0. Thus f
must have the shape

f(z) =
z − a
cz + d

.

The point ∞ must map to a point eiϕ of the unit circle. Thus

f(z) = eiϕ
z − a
z + d

.

The factor eiϕ obviously corresponds to a rotation. Suppose that we
could find two choices for d, d1 and d2, giving f1 and f2. The compo-
sition

f1 ◦ f−12 : ∆ −→ ∆

is a biholomorphic map that fixes the origin. It is therefore a rotation
and it is then easy to see that d1 = d2.
If d = −ā then it is easy to see that any real number z = x has the
same distance to a as to −ā.
Hence every biholomorphic map of the upper half plane H to the unit
disk ∆ has the form

z −→ eiϕ
z − a
z − ā

where Im a > 0, ϕ ∈ [0, 2π).

(d) a is the inverse image of f . The derivative of f is

f ′(z) = eiϕ
a− ā

(z − ā)2
.
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Thus

f ′(0) = eiϕ
a− ā
ā2

.

It follows that

eiϕ = f ′(0)
a− ā
ā2

.

It follows that we can recover ϕ as the argument of the RHS. As the
RHS is determined by f , it follows that we can recover ϕ from f .
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