MODEL ANSWERS TO THE FIFTH HOMEWORK

1. (a) Let u(z,y) = 2* — y*. We have

ou ou
— =2 d — = 2.
o T an o Y
It follows that
’u  J%*u
Ay=—+ —
4T + oy?
=2-2
=0.

Thus u is harmonic.
We look for a harmonic conjugate. We have to solve the Cauchy-
Riemann equations:

ov v

— =2z and — = 2y.

By or Y

We integrate the first equation with respect to y:
v(z,y) = 2xy + h(z).

Here the constant of integration h(x) is an arbitrary function of . We
put the known value for v into the second equation:

h'(z) = 0.

Thus v(x,y) = 2zy is a harmonic conjugate of u. The corresponding
holomorphic function is

f(z) =22
(b) Let u(z,y) = zy + 3z%y — y>. We have
%:y—i—ﬁxy and %:x+3x2—3y2.
ox dy
It follows that
Pu  O*u
Ay— —— 4+ 2=
T + Oy?
= 6y — 6y

Thus « is harmonic.



We look for a harmonic conjugate. We have to solve the Cauchy-
Riemann equations:

0 0
oy ox

We integrate the first equation with respect to y:

2

v(z,y) = % + 3zy® + h(z).

We put the known value for v into the second equation:
W (z) = —x — 32°.

Integrating with respect to x we get

h(z)=—"— —a°
(0)= -5 -2
Thus
y? s ° 3
= —+3zy" — — —2°.
v(x,y) 5 + 3xy 5 ¢
is a harmonic conjugate of u. We already saw that
22
_Z—
2

is a holomorphic function whose real part is xy. The function

2’3

has real and imaginary parts
3 — 3xy? and 322y — P,

Thus
2

f(z)= —i% +i2°

is a holomorphic function with real part v and imaginary part v.
(c) Let u(z,y) = sinhxsiny. We have

0 0
T _ coshzsin Y and P _ sinh 2 cos Y.
Ox dy
It follows that
Pu 0%
Au=—+ —
YT a2 * 0y?
=sinhzsiny — sinhxsiny
=0.

Thus « is harmonic.



We look for a harmonic conjugate. We have to solve the Cauchy-
Riemann equations:

0 0
2V — coshzsin Y and 2 — _sinhzcos Y.
dy ox
We integrate the first equation with respect to y:
v(x,y) = —coshz cosy + h(z).
We put the known value for v into the second equation:
h'(z) = 0.
Thus
v(x,y) = — coshz cos y.

is a harmonic conjugate of wu.
Note that

cos z = cosx coshy — ¢sin x sinh y
see Homework 2 of Math 120A. Thus
cosiz = cosy cosh x 4 ¢sinysinh
Hence the function
f(z) = —icosiz

is a holomorphic function with real part u and imaginary part v.

(d) Let u(z,y) = z1,z- We have
ou 2%+ 1y? — 222 y? — 22 d ou 2xy
_— = = an _—
or (22 +9?)? (22 +y?)? Oy (2> +y?)?
It follows that
O*u  0u
Ay=24 20
T e * 0y?
_ 2@+ P +da(@® —y?) (@ 4y 2x(2’ +9°)° —xayP(a’ + 17
(22 + y2)* (22 1 2)*
4o
= g CE )+ )+ 2)
= 0.

Thus u is harmonic.
We look for a harmonic conjugate. We have to solve the Cauchy-
Riemann equations:
ov y? — a? ov 21y
— = and — ="
Oy (2*+y?)? Or (2 +y?)
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We integrate the second equation with respect to x:
— + h(y).
2 )

We put the known value for v into the first equation:

h'(y) =0.

v(z,y) =

Thus
Y

R
is a harmonic conjugate of u. In fact

U(l’,y) =

is a holomorphic function with real part « and imaginary part v.

2. By assumption f = u+ iv is holomorphic. In this case —if = v —1u
is holomorphic. As v is the real part of ¢f and —u is the imaginary
part, it follows that —u is a harmonic conjugate of V.

3. (a) One way to do this is to write down the given expression and
use the chain rule to manipulate it to the Laplacian in Cartesian co-
ordinates. This approach is a little bit unsatisfying as it is then not
obvious how one would know the form of the Laplacian in polar coor-
dinates in the first place. We give another approach. Either method
involves quite a bit of computation.

We want to express % and % in terms of a% and a%' It is easiest to do
the opposite and then invert a matrix.
We have
x =rcosf and y =rsind.
Thus
%z%cos@—i—%sin@ and %:—r%sin@—i—r%cose.

In matrix form we get

2N\ [ cos  sinf 2
a% ~ \—rsinf rcosf a% '

As the determinant of the 2 x 2 matrix is r we can invert the matrix

to get
2 1 0 —sinf\ (<
(1) =+ (s ) (3)
By r \ 7rsin CoS ¥
It follows that

3u—@6089—l@sin9 and 8u—@sin@—i-l—ucosé’.

dr  Or r 00 dy  Or r 06
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We have

Upy = E (ur cos ) — 1’&9 sin 0)
ox r

1 1 1
= CoS 6’2 U, coSH — —upsinf | — —sin 03 U, cOS 0 — —ugy sin 6
or r r 06 r

1 . 1 . 1 . 1 . 1 .
= cos? Ou,, + — €08 0 sin 9u9—2 cos 0 sin Qug — — cos O sin Qu,g — — cos O sin Oug, — — sin? Ou,. +
r r r r r

2 . 2 . 1 . 1 .
= cos® Qu,., + — €08 0 sin Quy — = cos 0 sin Qu,g + — sin® Ou,. + - sin? Qugy
r r r r
and

1
Uyy = (% (ur sin @ + ;ue Cos 6)

1 1 1
= sin 02 U, sinf + —ug cosf | + —(305«92 U, sin @ + —ug cos 6
or r r 00 r

1 1 1 1 1
= sin? u,., — — CoSs 0 sin Qugy + — cos O sin Qu,g + — cos O sin Oug, + — cos? Ou, + — cos? Qugy —
r r r r r

2 2 1 1
= sin® Qu,., — — Cos 0 sin Qugy + = cos @ sin Ou,g + — cos? Ou, + - cos? Ougy.
r r r r
It follows that
AU = Uyy + Uy,

1 1
= (cos? 0 + sin® 0)u,.,. + (cos® § + sin? 0) —u, + (cos? § + sin’ 0)— uee
r r

= Upp + —Uyp + —5 Woo-
r r
Hence Laplace’s equation in polar coordinates is
82u+18u+ 1 82u_0
oz ror  r2062

(b) Consider

u(r,0) =lnr.
Then
ou 1
or r’
so that
0%u 18u+1 82u_ 1 11
o2  ror  r2 902 r2 rrp
=0.

It follows that In |z| is harmonic on the punctured plane C\ {0}.
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(¢) v = (z,y) = Arg(z) is a harmonic conjugate of In |z| on the complex
plane V' = C\ (—o0, 0] minus the non-positive reals. The function

Log(z) = In|z| 4+ i Arg(z)

is the principal branch of the logarithm.

Suppose that w is a harmonic conjugate for v on the whole punctured
plane. Then v — w is a constant function on V. But then if we can
extend w then we can extend v, which is not possible.

(d) We have
Ou 0 ou

= — and — =Inr.

or r 09
It follows that

e e T T A
8r2+r87"+r2+892 7"2+7"2+7“2

Thus € 1nr is harmonic. Recall the polar form of the Cauchy-Riemann
equations:

ou 1 ov J ou L ov
or —roo " a0 or
In our case these reduce to
ov ov Inr
— =40 d — =
00 o or r

If we integrate the first equation with respect to 6 we get
2

v(r,0) = % + h(r).

Plugging this into the second equation gives

Inr
W(r)=——-1.
() =-=

One solution to this differential equation is:
—(Inr)?

() =~
Thus > ()
0 Inr
0) = — —
is a harmonic conjugate of u(r,0) = 01Inr.
Let (Log 2)?
i(Log 2
o = il

Then f(z) is a holomorphic function with real part « and imaginary

part v.
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4. Pick a reference point in the annulus. A natural choice is 9 € (a, b).
We solve the Cauchy-Riemann equations in polar form:

v ou d v 10u

— =r— an — =

00 or or r 00
on the annulus cut along (a,b). We follow the procedure of lecture 13.
Note that if you unwrap the annulus separating the two pieces of the
cut then we get a rectangle.
We start with the second equation and we integrate with respect to 7:

16u

U(T7 9) - 88

Tt 0)dt + h(o).

If we plug this value into the first equation then we get

ou 0 18/18u

a0 =15

10% ,
:—-/ taez(t 0) dt + h(e)

S5 (L0 dt+ h’(e)

_ /82 (t,6) + 8u(t,9)dt+%h’(9)

or? or
1 0 ( Ou
= dt + —h’ 0
(1) e o
_ Ou ro Ou 1,
- E(rae) r Or (r079)+;h (9)
Hence
H(0) = rooe (ro,0)
=T0 or To, .
Integrating both sides with respect to 6 we get
ou
h’(e) = a (7“0, ¢) d¢>
up to a constant.
Thus
"10u
v(r,0) = — ae(t@ dt—i—ro/ o (1o, @) do,

up to a constant.

What is the obstruction to extending this function to the whole annu-
lus? The problem is to extend v across the cut and the only reason we
might not be able to do this is because the value of v as we approach

from below the cut is not equal to its value as we approach from above.
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Note the problem is to control what happens as 6 approaches 2. This
is controled by the second term in the integral

27r8
| G o).

If we want a continuous function across the cut then we want the value
of this integral to be zero.
Note that if

w(r,d) =Inr

27ra,w 27r1
7’0/0 W(Toﬁ)(w—?”o/o r_0d¢

:/O%ldgzﬁ

= 27.

then

On the other hand, we already saw in Question 3 that w is harmonic,
so that it has a harmonic conjugate on the cut annulus. It follows that
if we consider

u(r,0) — Clnr
then it is harmonic and has a harmonic conjugate on the whole annulus,

where g

ro [TTOu,

C = % ; E(TOG )d@

5. As u € [a, b] on the boundary U, it follows that u(x,y) < b on the
boundary. As w is continuous on the U U QU it has a maximum some-
where. If this maximum is on U then wu is constant or this maximum
is on the boundary. Either way, u(x,y) <b.
Consider —u. This is a harmonic function such that —u(z,y) < —a on
the boundary. It follows that —u(z,y) < —a on U. Thus u(z,y) > a on
U (this conclusion is sometimes called the minimum principle). Thus
u(z,y) € [a,b].
6. By the maximum principle, we just have to find the maximum over
the boundary of the closed unit disk. By the triangle equality 2™ + A
is a maximum when 2" and X\ are parallel. In this case the maximum
is " + p.
2™ is parallel to A if and only if

Therefore the maximum is achieved at
rawhelin where 0<k<n-—1,
8



and

W = 627ri/n
is a root of unity.
7. (a) Let
1
9(2) = .
NTE

As f(z) is holomorphic and nowhere zero on U it follows that g(z) is
holomorphic on U.
Suppose that |f(z)| > m and f(a) = m. Let

M-
m
Then
9(2)] = —
T =Tr0)
SMy

and |g(a)] = M. The strong maximum principle implies that g(z) is
constant. But then f(z) is constant.
(b) There are two cases. If f(z) is zero somewhere on the boundary
then | f(z)| is zero there and this is a minimum. Otherwise g(z) extends
to a continuous function on the boundary. In this case the maximum
principle applied to g implies that g achieves its maximum somewhere
on the boundary. This maximum is a minimum of f(z) on the bound-
ary.
8. Consider

9(z) = (z+ 1)~ f(2),
where € > 0 is a real number.
We first make sense of the power of (z + 1). Start with the stan-

dard branch of the logarithm, where we cut out the non-positive reals,

(—00,0] and we let
: T
logz = In|z| + i arg(2) where arg(z) € (—5, 5)
Using this branch of the logarithm we may define

ST — efelogz
as a holomorphic function on

V=C\ (~00,0].

In particular this defines g(z) as a holomorphic function on the half

plane, Re(z) > —1. Let U be the open disk of radius R centred at
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the origin intersected with the right half plane. Then ¢(z) extends
continuously to the boundary of U.

The maximum principle implies that |g(z)| achieves its maximum some-
where on the boundary of U. On the imaginary axis we have [1+z| > 1
and so

l9(2)[ = [(z + 1)~ (2)]

< 1711 (2)]
< M.

Suppose that |f(z)| < My. On the semicircle of radius R we have

l9(2)| = (= + 1)~ (2)|

< Mo

T (R—=1)
If we fix € and let R go to infinity the last expression goes to zero. In
particular we may assume that |g(z)| < M on the boundary of U.
The maximum principle implies that |g(z)| < M on U.
Suppose that there is a point @ in the right half plane where |f(a)| =
p > M. Suppose that r = |a|]. Note that

lim |[r + 1] = 1.
e—0

Therefore we may pick € > 0 sufficiently small so that

l9(a)| = |a+ 1] f(a)]
/()
la + 1|
> 12
T r 1]
> M.

As we already decided this is not possible, there is no such a and it
must in fact be the case that |f(z)] < M for every z in the right half
plane.

Challenge Problems: (Just for fun)

9. Suppose that p(z) is nowhere zero. Let U be the open disk of
radius R centred at the origin. Question 7 (b) implies that if m is the
minimum of |p(z)| on the circle of radius R then

p(2)] = m

on U.
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If R is sufficiently large then m goes to infinity, which is clearly impos-
sible. It follows that p(z) is zero somewhere.
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