
MODEL ANSWERS TO THE FIFTH HOMEWORK

1. (a) Let u(x, y) = x2 − y2. We have

∂u

∂x
= 2x and

∂u

∂y
= −2y.

It follows that

∆u =
∂2u

∂x2
+
∂2u

∂y2

= 2− 2

= 0.

Thus u is harmonic.
We look for a harmonic conjugate. We have to solve the Cauchy-
Riemann equations:

∂v

∂y
= 2x and

∂v

∂x
= 2y.

We integrate the first equation with respect to y:

v(x, y) = 2xy + h(x).

Here the constant of integration h(x) is an arbitrary function of x. We
put the known value for v into the second equation:

h′(x) = 0.

Thus v(x, y) = 2xy is a harmonic conjugate of u. The corresponding
holomorphic function is

f(z) = z2.

(b) Let u(x, y) = xy + 3x2y − y3. We have

∂u

∂x
= y + 6xy and

∂u

∂y
= x+ 3x2 − 3y2.

It follows that

∆u =
∂2u

∂x2
+
∂2u

∂y2

= 6y − 6y

= 0.

Thus u is harmonic.
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We look for a harmonic conjugate. We have to solve the Cauchy-
Riemann equations:

∂v

∂y
= y + 6xy and

∂v

∂x
= −x− 3x2 + 3y2.

We integrate the first equation with respect to y:

v(x, y) =
y2

2
+ 3xy2 + h(x).

We put the known value for v into the second equation:

h′(x) = −x− 3x2.

Integrating with respect to x we get

h(x) = −x
2

2
− x3.

Thus

v(x, y) =
y2

2
+ 3xy2 − x2

2
− x3.

is a harmonic conjugate of u. We already saw that

−iz
2

2

is a holomorphic function whose real part is xy. The function

z3

has real and imaginary parts

x3 − 3xy2 and 3x2y − y3.
Thus

f(z) = −iz
2

2
+ iz3

is a holomorphic function with real part u and imaginary part v.
(c) Let u(x, y) = sinh x sin y. We have

∂u

∂x
= coshx sin y and

∂u

∂y
= sinhx cos y.

It follows that

∆u =
∂2u

∂x2
+
∂2u

∂y2

= sinhx sin y − sinhx sin y

= 0.

Thus u is harmonic.
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We look for a harmonic conjugate. We have to solve the Cauchy-
Riemann equations:

∂v

∂y
= coshx sin y and

∂v

∂x
= − sinhx cos y.

We integrate the first equation with respect to y:

v(x, y) = − coshx cos y + h(x).

We put the known value for v into the second equation:

h′(x) = 0.

Thus

v(x, y) = − coshx cos y.

is a harmonic conjugate of u.
Note that

cos z = cosx cosh y − i sinx sinh y

see Homework 2 of Math 120A. Thus

cos iz = cos y coshx+ i sin y sinhx

Hence the function

f(z) = −i cos iz

is a holomorphic function with real part u and imaginary part v.
(d) Let u(x, y) = x

x2+y2
. We have

∂u

∂x
=
x2 + y2 − 2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
and

∂u

∂y
= − 2xy

(x2 + y2)2

It follows that

∆u =
∂2u

∂x2
+
∂2u

∂y2

=
−2x(x2 + y2)2 + 4x(x2 − y2)(x2 + y2)

(x2 + y2)4
− 2x(x2 + y2)2 − ∗xy2(x2 + y2)

(x2 + y2)4

=
4x

(x2 + y2)3
(
−(x2 + y2) + (x2 − y2) + 2y2

)
= 0.

Thus u is harmonic.
We look for a harmonic conjugate. We have to solve the Cauchy-
Riemann equations:

∂v

∂y
=

y2 − x2

(x2 + y2)2
and

∂v

∂x
=

2xy

(x2 + y2)2
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We integrate the second equation with respect to x:

v(x, y) = − y

x2 + y2
+ h(y).

We put the known value for v into the first equation:

h′(y) = 0.

Thus

v(x, y) = − y

x2 + y2

is a harmonic conjugate of u. In fact

f(z) =
1

z

is a holomorphic function with real part u and imaginary part v.
2. By assumption f = u+ iv is holomorphic. In this case −if = v− iu
is holomorphic. As v is the real part of if and −u is the imaginary
part, it follows that −u is a harmonic conjugate of V .
3. (a) One way to do this is to write down the given expression and
use the chain rule to manipulate it to the Laplacian in Cartesian co-
ordinates. This approach is a little bit unsatisfying as it is then not
obvious how one would know the form of the Laplacian in polar coor-
dinates in the first place. We give another approach. Either method
involves quite a bit of computation.
We want to express ∂

∂r
and ∂

∂θ
in terms of ∂

∂x
and ∂

∂y
. It is easiest to do

the opposite and then invert a matrix.
We have

x = r cos θ and y = r sin θ.

Thus

∂u

∂r
=
∂u

∂x
cos θ +

∂u

∂y
sin θ and

∂u

∂θ
= −r∂u

∂x
sin θ + r

∂u

∂y
cos θ.

In matrix form we get(
∂
∂r
∂
∂θ

)
=

(
cos θ sin θ
−r sin θ r cos θ

)(
∂
∂x
∂
∂y

)
.

As the determinant of the 2 × 2 matrix is r we can invert the matrix
to get (

∂
∂x
∂
∂y

)
=

1

r

(
r cos θ − sin θ
r sin θ cos θ

)(
∂
∂r
∂
∂θ

)
It follows that

∂u

∂x
=
∂u

∂r
cos θ − 1

r

∂u

∂θ
sin θ and

∂u

∂y
=
∂u

∂r
sin θ +

1

r

∂u

∂θ
cos θ.
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We have

uxx =
∂

∂x

(
ur cos θ − 1

r
uθ sin θ

)
= cos θ

∂

∂r

(
ur cos θ − 1

r
uθ sin θ

)
− 1

r
sin θ

∂

∂θ

(
ur cos θ − 1

r
uθ sin θ

)
= cos2 θurr +

1

r2
cos θ sin θuθ

1

r2
cos θ sin θuθ −

1

r
cos θ sin θurθ −

1

r
cos θ sin θuθr −

1

r
sin2 θur +

1

r2
sin2 θuθθ +

1

r2
cos θ sin θuθ

= cos2 θurr +
2

r2
cos θ sin θuθ −

2

r
cos θ sin θurθ +

1

r
sin2 θur +

1

r2
sin2 θuθθ

and

uyy =
∂

∂y

(
ur sin θ +

1

r
uθ cos θ

)
= sin θ

∂

∂r

(
ur sin θ +

1

r
uθ cos θ

)
+

1

r
cos θ

∂

∂θ

(
ur sin θ +

1

r
uθ cos θ

)
= sin2 θurr −

1

r2
cos θ sin θuθ +

1

r
cos θ sin θurθ +

1

r
cos θ sin θuθr +

1

r
cos2 θur +

1

r2
cos2 θuθθ −

1

r2
cos θ sin θuθ

= sin2 θurr −
2

r2
cos θ sin θuθ +

2

r
cos θ sin θurθ +

1

r
cos2 θur +

1

r2
cos2 θuθθ.

It follows that

∆u = uxx + uyy

= (cos2 θ + sin2 θ)urr + (cos2 θ + sin2 θ)
1

r
ur + (cos2 θ + sin2 θ)

1

r2
uθθ

= urr +
1

r
ur +

1

r2
uθθ.

Hence Laplace’s equation in polar coordinates is

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0.

(b) Consider

u(r, θ) = ln r.

Then
∂u

∂r
=

1

r
,

so that

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
+
∂2u

∂θ2
= − 1

r2
+

1

r

1

r
= 0.

It follows that ln |z| is harmonic on the punctured plane C \ {0}.
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(c) v = (x, y) = Arg(z) is a harmonic conjugate of ln |z| on the complex
plane V = C \ (−∞, 0] minus the non-positive reals. The function

Log(z) = ln |z|+ iArg(z)

is the principal branch of the logarithm.
Suppose that w is a harmonic conjugate for u on the whole punctured
plane. Then v − w is a constant function on V . But then if we can
extend w then we can extend v, which is not possible.
(d) We have

∂u

∂r
=
θ

r
and

∂u

∂θ
= ln r.

It follows that

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
+
∂2u

∂θ2
= − θ

r2
+

θ

r2
+

1

r2
· 0

= 0.

Thus θ ln r is harmonic. Recall the polar form of the Cauchy-Riemann
equations:

∂u

∂r
=

1

r

∂v

∂θ
and

∂u

∂θ
= −r∂v

∂r
.

In our case these reduce to
∂v

∂θ
= θ and

∂v

∂r
= − ln r

r
.

If we integrate the first equation with respect to θ we get

v(r, θ) =
θ2

2
+ h(r).

Plugging this into the second equation gives

h′(r) = − ln r

r
.

One solution to this differential equation is:

h(r) =
−(ln r)2

2
.

Thus

v(r, θ) =
θ2

2
− (ln r)2

2
is a harmonic conjugate of u(r, θ) = θ ln r.
Let

f(z) = −i(Log z)2

2
.

Then f(z) is a holomorphic function with real part u and imaginary
part v.
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4. Pick a reference point in the annulus. A natural choice is r0 ∈ (a, b).
We solve the Cauchy-Riemann equations in polar form:

∂v

∂θ
= r

∂u

∂r
and

∂v

∂r
= −1

r

∂u

∂θ
.

on the annulus cut along (a, b). We follow the procedure of lecture 13.
Note that if you unwrap the annulus separating the two pieces of the
cut then we get a rectangle.
We start with the second equation and we integrate with respect to r:

v(r, θ) = −
∫ r

r0

1

t

∂u

∂θ
(t, θ) dt+ h(θ).

If we plug this value into the first equation then we get

∂u

∂r
(r, θ) = −1

r

∂

∂θ

∫ r

r0

1

t

∂u

∂θ
(t, θ) dt+

1

r
h′(θ)

= −1

r

∫ r

r0

1

t

∂2u

∂θ2
(t, θ) dt+

1

r
h′(θ)

=
1

r

∫ r

r0

t
∂2u

∂r2
(t, θ) +

∂u

∂r
(t, θ) dt+

1

r
h′(θ)

=
1

r

∫ r

r0

∂

∂r

(
t
∂u

∂r

)
dt+

1

r
h′(θ)

=
∂u

∂r
(r, θ)− r0

r

∂u

∂r
(r0, θ) +

1

r
h′(θ).

Hence

h′(θ) = r0
∂u

∂r
(r0, θ).

Integrating both sides with respect to θ we get

h(θ) = r0

∫ θ

0

∂u

∂r
(r0, φ) dφ,

up to a constant.
Thus

v(r, θ) = −
∫ r

r0

1

t

∂u

∂θ
(t, θ) dt+ r0

∫ θ

0

∂u

∂r
(r0, φ) dφ,

up to a constant.
What is the obstruction to extending this function to the whole annu-
lus? The problem is to extend v across the cut and the only reason we
might not be able to do this is because the value of v as we approach
from below the cut is not equal to its value as we approach from above.
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Note the problem is to control what happens as θ approaches 2π. This
is controled by the second term in the integral

r0

∫ 2π

0

∂u

∂r
(r0, φ) dφ.

If we want a continuous function across the cut then we want the value
of this integral to be zero.
Note that if

w(r, θ) = ln r

then

r0

∫ 2π

0

∂w

∂r
(r0, φ) dφ = r0

∫ 2π

0

1

r0
dφ

=

∫ 2π

0

1 dφ

= 2π.

On the other hand, we already saw in Question 3 that w is harmonic,
so that it has a harmonic conjugate on the cut annulus. It follows that
if we consider

u(r, θ)− C ln r

then it is harmonic and has a harmonic conjugate on the whole annulus,
where

C =
r0
2π

∫ 2π

0

∂u

∂r
(r0e

iθ) dθ.

5. As u ∈ [a, b] on the boundary ∂U , it follows that u(x, y) ≤ b on the
boundary. As u is continuous on the U ∪ ∂U it has a maximum some-
where. If this maximum is on U then u is constant or this maximum
is on the boundary. Either way, u(x, y) ≤ b.
Consider −u. This is a harmonic function such that −u(x, y) ≤ −a on
the boundary. It follows that −u(x, y) ≤ −a on U . Thus u(x, y) ≥ a on
U (this conclusion is sometimes called the minimum principle). Thus
u(x, y) ∈ [a, b].
6. By the maximum principle, we just have to find the maximum over
the boundary of the closed unit disk. By the triangle equality zn + λ
is a maximum when zn and λ are parallel. In this case the maximum
is rn + ρ.
zn is parallel to λ if and only if

zn = rneiθ

Therefore the maximum is achieved at

rωkeθi/n where 0 ≤ k ≤ n− 1,
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and

ω = e2πi/n

is a root of unity.
7. (a) Let

g(z) =
1

f(z)
.

As f(z) is holomorphic and nowhere zero on U it follows that g(z) is
holomorphic on U .
Suppose that |f(z)| ≥ m and f(a) = m. Let

M =
1

m
.

Then

|g(z)| = 1

|f(z)|
≤M,

and |g(a)| = M . The strong maximum principle implies that g(z) is
constant. But then f(z) is constant.
(b) There are two cases. If f(z) is zero somewhere on the boundary
then |f(z)| is zero there and this is a minimum. Otherwise g(z) extends
to a continuous function on the boundary. In this case the maximum
principle applied to g implies that g achieves its maximum somewhere
on the boundary. This maximum is a minimum of f(z) on the bound-
ary.
8. Consider

g(z) = (z + 1)−εf(z),

where ε > 0 is a real number.
We first make sense of the power of (z + 1). Start with the stan-
dard branch of the logarithm, where we cut out the non-positive reals,
(−∞, 0] and we let

log z = ln |z|+ i arg(z) where arg(z) ∈ (−π
2
,
π

2
).

Using this branch of the logarithm we may define

z−ε = e−ε log z

as a holomorphic function on

V = C \ (−∞, 0].

In particular this defines g(z) as a holomorphic function on the half
plane, Re(z) > −1. Let U be the open disk of radius R centred at
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the origin intersected with the right half plane. Then g(z) extends
continuously to the boundary of U .
The maximum principle implies that |g(z)| achieves its maximum some-
where on the boundary of U . On the imaginary axis we have |1+z| ≥ 1
and so

|g(z)| = |(z + 1)−εf(z)|
≤ |1|−ε|f(z)|
≤M.

Suppose that |f(z)| ≤M0. On the semicircle of radius R we have

|g(z)| = |(z + 1)−εf(z)|

≤ M0

(R− 1)ε
.

If we fix ε and let R go to infinity the last expression goes to zero. In
particular we may assume that |g(z)| ≤M on the boundary of U .
The maximum principle implies that |g(z)| ≤M on U .
Suppose that there is a point a in the right half plane where |f(a)| =
µ > M . Suppose that r = |a|. Note that

lim
ε→0
|r + 1|ε = 1.

Therefore we may pick ε > 0 sufficiently small so that

|g(a)| = |a+ 1|−ε|f(a)|

=
|f(a)|
|a+ 1|ε

≥ µ

|r + 1|ε
> M.

As we already decided this is not possible, there is no such a and it
must in fact be the case that |f(z)| ≤ M for every z in the right half
plane.

Challenge Problems: (Just for fun)

9. Suppose that p(z) is nowhere zero. Let U be the open disk of
radius R centred at the origin. Question 7 (b) implies that if m is the
minimum of |p(z)| on the circle of radius R then

|p(z)| ≥ m

on U .
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If R is sufficiently large then m goes to infinity, which is clearly impos-
sible. It follows that p(z) is zero somewhere.
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