
MODEL ANSWERS TO THE THIRD HOMEWORK

1. Let

f(z) =
eiaz − eibz

z2
.

This has a pole at 0 and so we integrate around the indented contour

γ = γ− + γ0 + γ+ + γ2,

where γ− goes from −R to −ρ, γ0 goes along the semicircle of radius ρ
from −ρ to ρ in the upper half plane, γ+ goes from ρ to R and γ2 goes
back to −R along the semicircle of radius R in the upper half plane.
As f(z) is holomorphic on

U = { z ∈ C | ρ < |z| < R } ∩H,

whose boundary is γ, Cauchy’s theorem implies that∫
γ

eiaz − eibz

z2
dz = 0.

We estimate the integral of f(z) on γ2. For the maximum value M we
have ∣∣∣∣eiaz − eibzz2

∣∣∣∣ =
|eiaz − eibz|
|z2|

≤ 2

R2
.

It follows that ∣∣∣∣∫
γ2

eiaz − eibz

z2
dz

∣∣∣∣ ≤ LM

≤ πR

R2

≤ π

R
,

which goes to zero as R goes to infinity.
Note that f(z) has a simple pole at 0, since

eiaz − eibz = i(a− b)z + . . .

has a simple zero. We can also use this to compute the residue:

Res0 f(z) = i(a− b).
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It follows that

lim
ρ→0

∫
γ0

eiaz − eibz

z2
dz = −πii(a− b)

= π(a− b).
If we let R to ∞ and ρ go to zero then the integral over γ− and γ+
approaches the Cauchy principal value of∫ ∞

−∞

cos(ax)− cos(bx)

x2
dx.

It follows that the Cauchy principal value of the integral above is π(b−
a). Taking real parts this implies that the Cauchy principal value of
the integral ∫ ∞

−∞

cos(ax)− cos(bx)

x2
dx

is also π(a− b). As the integrand

cos(ax)− cos(bx)

x2

is even it follows∫ ∞
0

cos(ax)− cos(bx)

x2
dx =

π

2
(b− a).

If we put a = 0 and b = 2 then we get∫ ∞
0

sin2 x

x2
dx =

1

2

∫ ∞
0

1− cos(2x)

x2
dx

=
1

2

π

2
(2− 0)

=
π

2
.

2. Let

f(z) =
1√

z(z2 + 1)
.

We have to choose a branch of the logarithm to make sense of f(z).
(i) We use the same branch of the logarithm as in lecture 7. We cut
the complex plane along the negative imaginary axis:

V = C \ { iy | y ≤ 0 }.
We then choose a branch of the logarithm

log z = ln |z|+ i arg z where arg z ∈ (−π/2, 3π/2).

We use this to define √
z = elog z/2.
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This makes
√
z a holomorphic function on V .

We integrate along the same contour as in question 1. f(z) has one
isolated singularity as i. This is a simple pole and the residue is:

Resi f(z) = lim
z→i

z − i√
z(z2 + 1)

= lim
z→i

1√
z(z + i)

=
1

2i
√
i

=
1

2ieπi/4

=
1

2i
e−πi/4.

The residue theorem gives∫
γ

dz√
z(z2 + 1)

= 2πiResi f(z)

= πe−πi/4.

We estimate the integral of f(z) on γ2. For the maximum value M we
have ∣∣∣∣ 1√

z(z2 + 1)

∣∣∣∣ =
1√

z(z2 + 1)|

≤ 1

R1/2(R2 − 1)
.

It follows that ∣∣∣∣∫
γ2

dz√
z(z2 + 1)

∣∣∣∣ ≤ LM

≤ πR

R1/2(R2 − 1)

=
πR1/2

R2 − 1
,

which goes to zero as R goes to infinity.
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Now we compute what happens over γ0 as ρ goes to zero. We estimate
the maximum value M of |f(z)| over γ0:∣∣∣∣ 1√

z(z2 + 1)

∣∣∣∣ =
1√

z(z2 + 1)|

≤ 1

ρ1/2(1− ρ2)
.

It follows that ∣∣∣∣∫
γ2

dz√
z(z2 + 1)

∣∣∣∣ ≤ LM

≤ πρ

ρ1/2(1− ρ2)

=
πρ1/2

1− ρ2
,

which goes to zero as ρ goes to zero.
The integral over γ+ is equal to∫

γ+

dz√
z(z2 + 1)

=

∫ R

ρ

dx√
x(x2 + 1)

which goes to the value of the improper integral I we are trying to
compute, as ρ goes to zero and R to infinity.
Finally, for the integral over γ− we use the parametrisation

z = −x where x ∈ [ρ,R].

This traverses γ− in the wrong direction.∫
γ−

dz√
z(z2 + 1)

= −i
∫ R

ρ

dx√
x(x2 + 1)

.

Note that the minus sign represents three minus signs; one as dz =
−dx, one for the fact that we traverse γ− in the wrong direction and
one to move i from the denominator to the numerator.
If we Let R go to infinity and ρ go to zero then we get

(1− i)I = πe−πi/4.

But then ∫ ∞
0

dx√
x(x2 + 1)

=
π√
2
.

(ii) We use the same branch of the logarithm as in lecture 8. We cut
out the non-negative real axis.

V = C \ {x |x ≥ 0 }.
4



We are going to make a choice of log z with a cut along the positive
real axis:

log z = ln |z|+ i arg z where arg z ∈ (0, 2π).

We also use the same contour as the one used in lecture 8.
f(z) has isolated singularities at ±i. They are both simple poles. We
already computed the residue at i,

Resi f(z) =
1

2i
e−πi/4.

For the residue at −i we have

Res−i f(z) = lim
z→−i

z + i√
z(z2 + 1)

= lim
z→−i

1√
z(z − i)

=
1

−2i
√
−i

= − 1

2ie−πi/4

= − 1

2i
eπi/4.

The residue theorem gives∫
γ

dz√
z(z2 + 1)

= 2πi (Resi f(z) + Res−i f(z))

= π
(
e−πi/4 + eπi/4

)
= π
√

2.

The integral over γ2 still goes to zero, since the upper bound we es-
tablished in (i) is still valid and the length L doubled. Similarly the
integral over γρ goes to zero. The integral over γ+ is the same as in (i):∫

γ+

dz√
z(z2 + 1)

=

∫ R

ρ

dx√
x(x2 + 1)

which goes to the value of the improper integral I we are trying to
compute, as ρ goes to zero and R to infinity.
Finally, for the integral over γ− we use the parametrisation

z = x where x ∈ [ρ,R].

This traverses γ− in the wrong direction.∫
γ−

dz√
z(z2 + 1)

=

∫ R

ρ

dx√
x(x2 + 1)

.
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Note that the plus sign represents two minus signs; one going in the
wrong direction and one for the fact that

√
z = −

√
x just below the

cut.
If we let R go to infinity and ρ go to zero then we get

2I = π
√

2.

But then ∫ ∞
0

dx√
x(x2 + 1)

=
π√
2
.

3. Let

f(z) =
log z

(z2 + 1)(z + 1)
,

where log z is the same branch of the logarithm as in 2 (ii). We integrate
this around the keyhole contour of 2 (ii).
f(z) has isolated singularities at ±i and −1, which are all simple. We
compute the residues. We have

Resi f(z) = lim
z→i

(z − i) log z

(z2 + 1)(z + 1)

= lim
z→i

log z

(z + i)(z + 1)

=
πi/2

(2i)(i+ 1)

=
π(1− i)

8
,

and

Res−i f(z) = lim
z→−i

(z + i) log z

(z2 + 1)(z + 1)

= lim
z→−i

log z

(z − i)(z + 1)

=
3πi/2

(−2i)(−i+ 1)

= −3π(1 + i)

8
,
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and finally

Res−1 f(z) = lim
z→−1

(z + 1) log z

(z2 + 1)(z + 1)

= lim
z→−1

log z

(z2 + 1)

=
πi

2
.

The residue theorem implies that∫
γ

log z

(z2 + 1)(z + 1)
dz = 2πi (Resi f(z) + Res−i f(z) + Res−1 f(z))

= 2πi
π

8
((1− i)− 3(1 + i) + 4i)

= −2πi
π

4
.

Next we show the integrals over γ2 and γ0 go to zero. As usual we have
to estimate the largest value of |f(z)|. Over γ2 we have

|f(z)| = | log z|
|(z2 + 1)(z + 1)|

≤ lnR + 2π

(R2 − 1)(R− 1)
.

Thus ∣∣∣∣∫
γ2

log z

(z2 + 1)(z + 1)
dz

∣∣∣∣ ≤ LM

≤ 2πR(lnR + 2π)

(R2 − 1)(R− 1)
,

which goes to zero as R goes to infinity. Over γ0 we have

|f(z)| = | log z|
|(z2 + 1)(z + 1)|

≤ 2π − ln ρ

(1− ρ2)(1− ρ)
.

Thus ∣∣∣∣∫
γ2

log z

(z2 + 1)(z + 1)
dz

∣∣∣∣ ≤ LM

≤ 2πρ(2π − ln ρ)

(1− ρ2)(1− ρ)
,

which goes to zero as ρ goes to zero, since ρ ln ρ goes to zero.
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The integral over γ+ is equal to∫
γ+

log z

(z2 + 1)(z + 1)
dz =

∫ R

ρ

lnx

(x2 + 1)(x+ 1)
dx.

Finally, for the integral over γ− we use the same parametrisation

z = x where x ∈ [ρ,R]

but with a different branch of the logarithm

log z = lnx+ 2πi.

This traverses γ− in the wrong direction, so we flip the sign.∫
γ−

log z

(z2 + 1)(z + 1)
dz = −

∫ R

ρ

lnx

(x2 + 1)(x+ 1)
dx−2πi

∫ R

ρ

1

(x2 + 1)(x+ 1)
dx.

Letting ρ go to zero and R go to infinity we get:

−2πiI = −2πi
π

4
.

Solving for I gives ∫ ∞
0

1

(x2 + 1)(x+ 1)
dx =

π

4
.

4. Let

f(z) =
3
√
z

(z + a)(z + b)

We use the same branch of the logarithm and keyhole contour as in
2 (ii). f(z) has isolated singularities at −a and −b. They are both
simple poles. We calculate the residues there:

Res−a f(z) = lim
z→−a

3
√
z

z + b

=
3
√
−a

−a+ b

=
eπi/3 3
√
a

−a+ b
.

By symmetry we also get

Res−b f(z) =
eπi/3 3
√
b

a− b
.
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The residue theorem implies that∫
γ

3
√
z

(z + a)(z + b)
dz = 2πi (Res−a f(z) + Res−b f(z))

= 2πi

(
eπi/3 3
√
a

−a+ b
+
eπi/3 3
√
b

a− b

)

= −2πieπi/3
3
√
a− 3
√
b

a− b
.

Next we show the integrals over γ2 and γ0 go to zero. As usual we have
to estimate the largest value of |f(z)|. Over γ2 we have

|f(z)| = | 3
√
z|

|(z + a)(z + b)|

≤ R1/3

(R− a)(R− b)
.

Thus ∣∣∣∣∫
γ2

3
√
z

(z + a)(z + b)
dz

∣∣∣∣ ≤ LM

≤ 2πR4/3

(R− a)(R− b)
,

which goes to zero as R goes to infinity. Over γ0 we have

|f(z)| = | 3
√
z|

|(z + a)(z + b)|

≤ ρ1/3

(a− ρ)(b− ρ)
.

Thus ∣∣∣∣∫
γ2

3
√
z

(z + a)(z + b)
dz

∣∣∣∣ ≤ LM

≤ 2πρ4/3

(a− ρ)(b− ρ)
,

which goes to zero as ρ goes to zero.
The integral over γ+ is equal to∫

γ+

3
√
z

(z + a)(z + b)
dz =

∫ R

ρ

3
√
x

(x+ a)(x+ b)
dx

Finally, for the integral over γ− we use the same parametrisation

z = x where x ∈ [ρ,R]
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but with a different branch of the cube root

3
√
z = e2πi/3 3

√
x.

This traverses γ− in the wrong direction, so we flip the sign.∫
γ−

3
√
z

(z + a)(z + b)
dz = −e2πi/3

∫ R

ρ

3
√
x

(x+ a)(x+ b)
dx

Letting ρ go to zero and R go to infinity we get:

(1− e2πi/3)I = −2πieπi/3
3
√
a− 3
√
b

a− b
.

Solving for I gives∫ ∞
0

3
√
x dx

(x+ a)(x+ b)
= I

= −2πi
eπi/3

1− e2πi/3
3
√
a− 3
√
b

a− b

= π
2i

eπi/3 − e−πi/3
3
√
a− 3
√
b

a− b

= π
1

sin π/3

3
√
a− 3
√
b

a− b

=
2π√

3

3
√
a− 3
√
b

a− b
.

5. Let

f(z) =
(log z)2

z2 + 1
.

We use the branch of the logarithm and the indented contour of 2 (i).
f(z) has isolated singularities at ±i which are both simple poles but
only the singularity at i belongs to U :

Resi f(z) = lim
z→i

(log z)2

2z

=
(πi/2)2

2i

=
π2i

8
.
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The residue theorem implies that∫
γ

(log z)2

z2 + 1
dz = 2πiResi f(z)

= 2πi
π2i

8

= −π
3

4
.

Next we show the integrals over γ2 and γ0 go to zero. As usual we have
to estimate the largest value of |f(z)|. Over γ2 we have

|f(z)| = | log z|2

|z2 + 1|

≤ (lnR + 2π)2

R2 − 1
.

Thus ∣∣∣∣∫
γ2

(log z)2

z2 + 1
dz

∣∣∣∣ ≤ LM

≤ πR(lnR + 2π)2

R2 − 1
,

which goes to zero as R goes to infinity. Over γ0 we have

|f(z)| = | log z|2

|z2 + 1|

≤ (2π − ln ρ)2

1− ρ2
.

Thus ∣∣∣∣∫
γ2

(log z)2

z2 + 1
dz

∣∣∣∣ ≤ LM

≤ πρ(2π − ln ρ)2

1− ρ2
,

which goes to zero as ρ goes to zero, since ρ(ln ρ)2 goes to zero.
The integral over γ+ is equal to∫

γ+

(log z)2

z2 + 1
dz =

∫ R

ρ

(lnx)2

x2 + 1
dx.

Finally, for the integral over γ− we use the parametrisation

z = −x where x ∈ [ρ,R].
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In this case
log z = lnx+ πi.

This traverses γ− in the wrong direction, so we flip the sign.∫
γ−

(log z)2

z2 + 1
dz =

∫ R

ρ

(lnx+ πi)2

x2 + 1
dx

=

∫ R

ρ

(lnx)2

x2 + 1
dx+ 2πi

∫ R

ρ

lnx

x2 + 1
dx− π2

∫ R

ρ

1

x2 + 1
dx.

Letting ρ go to zero and R go to infinity we get:

2I = −π
3

4
− 2πi

∫ ∞
0

lnx

x2 + 1
dx+ π2

∫ ∞
0

1

x2 + 1
dx.

We saw that ∫ ∞
0

1

x2 + 1
dx =

π

2
in lecture 2. If we take the imaginary part of both sides, we see that∫ ∞

0

lnx

x2 + 1
dx = 0.

Taking the real parts gives∫ ∞
0

(lnx)2

x2 + 1
dx =

π3

8
.
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