9. INSERTING THE LOGARITHM
Example 9.1. Calculate
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At first sight this integral seems straightforward, just integrate
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over the standard contour. The problem is that if we do this then we

get the value of
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and there is no obvious way to go from the value of this integral to the
value of the integral we are after, since 2% + 1 is neither odd nor even.

We already saw one fix in a homework problem, integrate along an
arc instead of a semicircle. If we go along the line from e*™/3R to 0
then we can exploit the fact that
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Here is another way to proceed which is more versatile. It looks as
though using a keyhole contour in Lecture 8 might work, since we only

integrate along the interval [p, R]. The problem with using the keyhole
contour is that there is no ambiguity in the definition of
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so that when we integrate over 7_ + v, the integrals cancel.
To engineer an integral that does not cancel we integrate
log 2
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instead. We use the same branch of the logarithm as in Lecture 8. We
cut along the positive real axis:

logz=1In|z| +iargz  where arg z € (0,2m)
so that log z is holomorphic on
V=C\{z|z>0}.
f(2) has isolated singularities at the cube roots of —1,
emi/3, 5i/3

and eomi/3,



These are all simple singularities. As they all have modulus one the log-
arithm is purely imaginary at these points. We compute the residues:
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We also have
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The residue theorem implies that
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Next we show the integrals over v, and 7y go to zero. As usual we
have to estimate the largest value of |f(z)]. Over v, we have
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which goes to zero as R goes to infinity. Over 7, we have
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which goes to zero as p goes to zero, since pln p goes to zero.
The integral over 7, is equal to

] R
/ 3ng dz:/ 3na: dx
vy 2 +1 o T +1

Finally, for the integral over v_ we use the same parametrisation

z=x  where 1z € [p,R)|
but with a different branch of the logarithm
log z = Inx + 2m1.

This traverses v_ in the wrong direction, so we flip the sign.
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Letting p go to zero and R go to infinity we get:

Solving for I gives
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