
7. Branch points

Example 7.1. Calculate

I =

∫ ∞
0

xa

(x2 + 1)2
dx where a ∈ (−1, 3).

To solve this problem using contour integration we introduce

f(z) =
za

(z2 + 1)2
.

This immediately introduces a problem, that wasn’t present for the
improper integral. Namely za is not well-defined. For example, if we
take a = 1/2 we are taking square roots.

To consistently choose a square root we need to cut the plane open
along a straight line. Which straight line? The usual choice is the
negative real axis.

Presumably we are going to integrate along the standard contour,
so the negative real axis is a bad choice of branch cut, since a half
(or better 1/(2 + π)) of the contour is along the negative real axis
(actually we can make this work but this requires looking at quite a
different contour). We don’t want the branch cut in the upper half
plane, so the best choice is to cut along the negative imaginary axis:

V = C \ { iy | y ≤ 0 }.

The best way to take roots is to use logarithms. So we are going to
make a choice of log z with a cut along the negative imaginary axis:

log z = ln |z|+ i arg z where arg z ∈ (−π/2, 3π/2).

This makes log z a holomorphic function on V . From here, it is easy
to define

za = ea log z.

This makes za a holomorphic function on V .
But now the problem is that we have to exclude 0 from the contour,

since 0 is part of the cut. So we use the same indented path as in
lecture 6, which has four pieces:

γ = γ− + γ0 + γ+ + γ2.

The function f(z) has isolated singularities at i which belongs to
the upper half plane. It doesn’t have a singularity at −i since f(z) is
not defined along the whole negative imaginary axis. We suppose that
R > 1 but ρ < 1, so that we capture i.
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We compute the residue at i. This is a double pole:

Resi f(z) = lim
z→i

d

dz

(
(z − i)2za

(z2 + 1)2

)
= lim

z→i

d

dz

(
za

(z + i)2

)
= lim

z→i

aza−1(z + i)2 − 2za(z + i)

(z + i)4

= lim
z→i

aza−1(z + i)− 2za

(z + i)3

=
aia−12i− 2ia

(2i)3

=
(a− 1)ia

−4i

=
a− 1

4
ieaπi/2.

The residue theorem implies that∫
γ

za

(z2 + 1)2
dz = 2πiResi f(z)

=
1− a

2
πeaπi/2.

We estimate the integral over γ2. We estimate the maximum value
M of |f(z)| over γ2:

|f(z)| =
∣∣∣∣ za

(z2 + 1)2

∣∣∣∣
=

|za|
|(z2 + 1)2|

≤ Ra

(R2 − 1)2
.

It follows that ∣∣∣∣∫
γ2

za

(z2 + 1)2
dz

∣∣∣∣ ≤ LM

≤ πRa+1

(R2 − 1)2
,

which goes to zero as R goes to infinity, since a+ 1 < 4.
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Now we compute what happens over γ0 as ρ goes to zero. We esti-
mate the maximum value M of |f(z)| over γ0:

|f(z)| =
∣∣∣∣ za

(z2 + 1)2

∣∣∣∣
=

|za|
|(z2 + 1)2|

≤ ρa

(1− ρ2)2
.

It follows that ∣∣∣∣∫
γ0

za

(z2 + 1)2
dz

∣∣∣∣ ≤ LM

≤ πρa+1

(1− ρ2)2
,

which goes to zero as ρ goes to zero, since a + 1 > 0. Note that the
denominator approaches 1, so that it plays no role.

The integral over γ+ is equal to∫
γ+

za

(z2 + 1)2
dz =

∫ R

ρ

xa

(x2 + 1)2
dx

which goes to the value of the improper integral I we are trying to
compute, as ρ goes to zero and R to infinity.

Finally, for the integral over γ− we use the parametrisation

z = −x where x ∈ [ρ,R].

This traverses γ− in the wrong direction, so we flip the sign.∫
γ−

za

(z2 + 1)2
dz = eaπi

∫ R

ρ

xa

(x2 + 1)2
dx.

Note that exponential is simply (−1)a.
Letting ρ go to zero and R go to infinity we get:

(1 + eaπi)I =
1− a

2
πeaπi/2.
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Solving for I gives∫ ∞
0

xa

(x2 + 1)2
dx = I

=
1− a

2
π
eaπi/2

1 + eaπi

=
1− a

4
π

2

e−aπi/2 + eaπi/2

=
π(1− a)

4 cos aπ/2
.
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