6. INDENTED PATHS
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Example 6.1. Calculate

diverges but so in fact does

Indeed,

and

We will need to use the Cauchy principal value both at infinity and
at 0:

Definition 6.2. Let f(x) be a complex valued function on a finite in-
terval

f:(b,c) — C.
We suppose that f is continuous except at a € (b, c).
The Cauchy principal value is the limil (assuming it exists):

lii% (/ba_ef(x) dz + a;f(x) dx) :
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Here € is a positive number decreasing to 0.

Example 6.3. Consider
Ydz
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The integrand is not continuous at 0.
This improper integral diverges but the Cauchy principal value ex-
ists. Indeed for the improper integral we have
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If we let u to zero first then we get —oo but if we let [ go to zero first
we get oo. In fact we can get any limit we please, if we coordinate [
and u. On the other hand, the Cauchy principal value is
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Now let us go back to calculating the original integral. The function
sin z
Z Y

has an isolated singularity at the origin and the singularity there is
removable. It follows that the integrand

sinx

x
extends to a function on the whole real line. This function is even and

SO we compute
*sinx
/ dz
o I
and divide by 2.

Proceeding as usual we consider

It is tempting to integrate this over the standard contour. The problem
is that f(z) has an isolated singularity at 0 which is not removable,

rather it is a simple pole.
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Instead we integrate over a small perturbation of the standard path.
We integrate from — R to —p along the real axis, v_; around a semicircle
of radius p in the upper half plane from —p to p, vo; from p to R along
the real axis, v, ; and then back along a semicircle of radius R, 7. As
usual we let R go to infinity and we are going to let p go to zero.

The semicircle of radius p is the small indentation. Note that we
traverse this semicircle clockwise, not anticlockwise. Let

Y=7-+t% T Y+ T

be the resulting closed contour.

Let U be the complement of the closed unit disc or radius p centred
at the origin, inside the open unit disc of radius R centred at the origin
in the upper half plane,

U={zeH|p<|z| <R},

the intersection of an annulus with the upper half plane. Then the
boundary of U is 7.

The only singularity of f(z) is at the origin and this is neither a
point of U nor a point of QU. Cauchy’s theorem implies that

/e—dz:().
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We now compute each part of the integral over v separately. The
integral over 7, goes to zero, using Jordan’s Lemma:
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which goes to zero, as R goes to infinity.
As we let R go to infinity and p go to zero then the integral over ~_
and v, tends to the Cauchy principal value:
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of the improper integral
o] ei:v
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It remains to understand what happens around the semicircle of
radius p, as p goes to zero. Now if we went all the way around the circle
of radius p then we could compute this using the Residue Theorem.

In fact the integral around the semicircle approaches half of this, as
p goes to zero:

Lemma 6.4. Suppose that f(z) has a simple pole at a € R and v, s
the semicircle of radius p centred at a in the upper half plane, traversed

anticlockwise.
Then

p—0

lim/ f(2)dz = miRes, f(2).
Ve

We defer the proof of (6.4]) to the end and first show how to use it
to finish the computation. We compute the residue at 0:

12z

Resyg — = lim e
z z—0
= 1.
(6.4) implies that
eiz
lim | —dz = —mi.
p—0 z

70
Note the minus sign, since we traverse v, clockwise.

Putting all of this together we see that the Cauchy principal value

of .
/ £ dz
oo T

is mi. Taking the imaginary part, it follows that the Cauchy principal

value of ..
sin x
/ dx
oo T

is m. Using the fact that sinz/xz is even, it follows that the Cauchy

principal value of
*sinx
/ dx
0 T

is /2. But this obviously agrees with the value of the improper integral

*sinx T
dr = —.
0 T 2

Proof. By assumption f(z) has a Laurent expansion centred at a in a
punctured neighbourhood of a, so that we may write

J() = =+ g(2),
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where g(z) is holomorphic at a.
If we parametrise 7, in the obvious way,

7(0) = pe’ +a where 0 € [0,

then .
dz = —pe'? do

/Wf(z)dz:/oﬂialdejt/vg(z)dz

p b

= mia_1 + / g(z)dz
v

P

= i Res, f(2) +/ g(z)dz.

Yo

and so we get

As g(z) is holomorphic at a it is certainly continuous at a and so it
is certainly bounded near a,

l9(2)] < M,
for some M. The semicircle of radius p has length 7mp and so
/ g(z)dz| < LM
Tp
=mpM,
which goes to zero, as p goes to zero. U

Note that it isn’t really important that a is a real number and there
are similar results if one goes around the arc of any circle, we just pick
up the corresponding proportion of the residue.
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