5. TRIGONOMETRIC INTEGRALS

Example 5.1. Calculate
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We are going to use contour integration to evaluate this integral.
Clearly this integral has a different nature to the previous examples,
since the range of integration is a finite interval.

However it does seems that we are using angles and that we are going
around a circle. So let’s try

U=A,

the open unit disk. In this case the boundary is the unit circle. We use
the standard parametrisation

z=(0) = e” so that dz = ie" df = iz db.
It follows that
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The integrand is
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This has poles at the zeroes of
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which are given by the quadratic formula,
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Now the negative square root doesn’t belong to A and the positive
square root
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does belong to A. The positive square root is a simple pole. The
residue is
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The residue theorem implies
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Example 5.2. Calculate
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We first suppose that a # 0. Note that the graph of cos# is sym-
metric about the vertical line § = 7 so that the integrand is symmetric

about the same line.
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and divide by 2.

So we calculate
We proceed as before, we integrate around the unit circle and we use
the same parametrisation. We have
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The integrand is
241
J(z) = 22(z —a)(az — 1)
This has isolated singularities at 0, @ and 1/a. Since a € (—1,1), on

the first two belong to the unit disk.
The first singularity is a double pole:
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The second is a simple pole
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The residue theorem implies that
4
1
7{ z dz = 2mi (Resp f(2) + Res, f(2))
.

22(z —a)(az — 1)
,<a2+1 a*+1 >
= 2mi +

a? a’(a®? —1)
:2m< at—1 a* +1 )
a’(a?—1)  a?(a®>—1)
2
- 2m‘a22a_
It follows that
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