26. RIEMNANN MAPPING THEOREM: II

We end the course with an indication of how to prove the Riemann
mapping theorem. In fact we sketch two approaches.
We begin with a basic fact that is used in both approaches:

Theorem 26.1. FEvery harmonic function uw on a simply connected
region U has a harmonic conjugate v on U.

The proof of is not particularly hard. Recall that we con-
structed harmonic conjugates in Lecture 14 on rectangles and open
disks by explicitly solving the Cauchy-Riemann equations. This in-
volved integration over a carefully selected path. For a simply con-
nected region U we start with a point b € U and we pick any path to a
general point z. The fact that U is simply connected implies that the
choice of path does not matter.

The first approach is relatively elementary, apart from one step. Let
U be a simply connected region, not the whole complex plane. Pick a
point a € U. Let F be the set of all injective (or one to one) holomor-
phic functions from U to A that send a to 0 such that f'(a) > 0:

F={f:U — A] f is holomorphic, injective, f(a) =0 and f'(a) > 0.}

Note that we are looking for an element f of F that is also surjective
(or onto). The basic idea is that if we are given an element g of F that
is not surjective then we can improve g by increasing its image. Thus
we are looking for one of the best elements of F. The goal is to make
this idea precise.

The first step is to show that F is non-empty, that is, to construct
an element of F.

Lemma 26.2. Let U be a simply connected region and suppose that
c¢U.

Then we can choose a holomorphic branch h(z) = \/z —c of the
square root. h(z) is injective, the map h: U — h(U) is biholomorphic
and h(U) and —h(U) are disjoint.

Proof. Consider the function
u(z) =1In(z — ¢).
u is a harmonic function on U. implies that u has a harmonic
conjugate v. The function
g(z) = u(z) +iv(z) = log(z — ¢)
defines a holomorphic branch of the logarithm. The function

h(z) = e9(2)/2
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is then a holomorphic branch of v/z — c.
Suppose that h(z1) = h(zq). Squaring both sides we get

21 —c=h*(z)
= h*(2)
— Z9 — C.

Adding a to both sides we get z; = z3. Thus h(z) is injective. It is
clear that the derivative of h is nowhere zero. Thus h: U — h(U) is
biholomorphic.

Now suppose that

h(z1) = —h(z)
is a common point of A(U) and —h(U). Squaring both sides we get
21 —c=h*(z)
= h*(z)
— Z9 — C.
Adding ¢ to both sides we get z; = z3. This is clearly nonsense and so
h(U) and —h(U) are disjoint. O
Lemma 26.3. F is non-empty.

Proof. Suppose that the closed disk of radius p centred about d is
contained in h(U).
Then every point of —h(U) is further than distance p from d:

ld+h(z)|>p forall zeU.
It follows that

p
—— <1 for all }
|d+h(z)|< or a zeU
But then the holomorphic map
p
T )+ d

sends U into A.
Suppose that f(a) = b. Consider the map

z—0
1—bz
This is a biholomorphic map of the unit disk that sends b to 0. The
composition with the map above sends a to 0. Finally, if the argument
of the derivative at a is 6 then the rotation

z— e Yy
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rotates the derivative back to a positive real. Thus F is non-empty. [

Now we show that if f € F and f is not surjective onto A then we
can do better:

Lemma 26.4. Let V C A be a simply connected region that contains

0.
If V- # A then there is a biholomorphic map

vV —W
where W C A, 1(0) =0 and ¢'(0) > 1.
Proof. Pick b ¢ V. Let

g A— A
be the biholomorphic map
z—>b
9(2) = 1—bz

This sends b to 0 so that the image g(V') is a simply connected region
that does not contain 0. (26.2)) implies that we can define a holomorphic
branch of the square root function on ¢g(V'), h(z) = y/z. Finally let

fTA— A
be the biholomorphic map
z—h(-=b
1 — h(=b)z

Then f sends h(—b) = (h o ¢)(0) to 0. Thus the composition is a
biholomorphic map of

= fohog:V—W
such that ¢(0) = 0. Possibly applying a rotation we may assume that

Y'(0) > 0.
We have

g(0)=1—[of

and .
f'(h(=b)) = e
Now
R*(z) = 2z
Thus
B (z) = ! and so  h/(=b) = !



If » = | — b| then |h(—b)| = r/2. It follows that

[W(0)] = [f'(R(=b)[ - [W'(=b)[ - |¢'(0)]
_ 1—|bf?
2[h(=b)[ - (1 = [A(=)[?)
1—7r?
R
147
=517
P12 4 pl/2
2
> 1. O

Note that the last inequality is an easy result from one variable
calculus

1
r+—->2 for x€(0,1).
T

The best element of F is the function with the biggest derivative at
0. It is non-trivial result that F contains such an element:

Theorem 26.5. There is an element [ € F such that if g € F then
f'(0) = ¢'(0).
We now give a proof of the Riemann mapping theorem:

Proof of 2/.1. Pick f € F with the largest derivative at 0. Suppose
that f is not surjective. Pick b ¢ V = f(U). Then (26.4)) implies we
can find an injective holomorphic function

:V— A

such that ¢’(0) > 1. The composition g = % o f is holomorphic,
injective, g(a) = 0 and ¢'(a) > 0. Thus g € F. But

g'(a) =4'(0) - f'(a)
> f'(a),

which is not possible, by our choice of f. Thus f must be surjective so
that f is biholomorphic. O

The second proof of the Riemann mapping theorem relies on the fact
that we can solve Dirichlet’s problem for U. As in the first proof, we
may assume that U is bounded. There is no harm in assuming that
0 € U. Consider the continuous function In|z| on the boundary. As
we are assuming that we can solve Dirichlet’s problem on U there is

a harmonic function v on U extends to a continuous function on the
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boundary where it is In |z|. As U is simply connected it has a harmonic
conjugate v(z).
Consider
Then f(z) is a holomorphic function and on the boundary we have
7(2)] = Jze )

= Jel e
=1.

Thus |f(z)] < 1 on U by the maximum principle. Thus f: U — A is
holomorphic. f(z) has only one zero, at zero.
Suppose that b € A. Pick r > |b| and consider applying the argument
principle to
f(z) =0
on the circle of radius r centred at 0 we see that f(z) is bijective. Thus
f(2) is biholomorphic.
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