
25. Schwarz-Christofell transformations

We consider a special but interesting case of the Riemann mapping
theorem. We suppose that the boundary of the region U is a poly-
gon, a finite number of straight line segments. We call such a region
polygonal.

The polygon is described by its vertices w1, w2, . . . , wn. The edges of
the polygon are the line segments from w1 to w2, from w2 to w3, . . . ,
and from wn−1 to wn. We suppose that with this orientation we are
going around the polygon counterclockwise.

Somewhat counterintuitively instead of finding a biholomorphic map
of the unit disk and the region U , we look for a biholomorphic map of
the upper half plane H to U .

We are going to write down a differential equation satisfied by the
solution. Most of the time it won’t be possible to solve the differen-
tial equation using elementary functions. However, one can solve the
differential equation numerically. If we start with an arbitrary region
then one can approximate the region using a polygonal region.

It is clear that we want to map the real line, the boundary of the
upper half plane, to the polygon. We first focus on how to arrange
for the straight line segment between two points on the real axis (a, b)
to map to a line segment connecting u to v. Notice that if f is a
holomorphic map on the upper half plane that sends the interval (a, b)
to the line segment connecting u to v then f extends to a holomorphic
function across the interval (a, b) by the Schwarz reflection principle.

In particular it makes sense to write down the derivative of f . Con-
sider the unit tangent vector to the real line at a point z of the interval
(a, b). This gets sent to the unit tangent vector along the line segment
connecting u to v. Recall that f(z) turns the tangent vectors by the
angle arg f ′(z). The argument of the tangent vector to the real line is
zero and the argument of the unit tangent vector to the line segment
connecting u to v is fixed at some angle α ∈ [0, 2π). We have then

α = arg f ′(z) where z ∈ (a, b).

In other words, the argument of the derivative of f ′(z) is constant.
Note that if we try

f ′(z) = (z − a)k

where k is a real number then the argument depends on whether z < a
or z > a. If z < a then z − a is a negative real number. The argument
of z− a is π and so the argument of (z− a)k is kπ. This is a constant.
If z > a then z− a is a positive real and the argument is zero. Raising
to the kth power will not change the argument.
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Note that z = a is a point where the power function is not holo-
morphic. In fact we want to send a to a vertex of the polygon and
so

As usual to define (z − a)k we have to cut the complex plane. We
cut the complex plane with a vertical line starting at the point a.

Now if we multiply by a constant λ

f ′(z) = λ(z − a)k

this also changes the argument by a constant amount, the argument of
λ.

Since we want a transition at a and b the next thing to try is

f ′(z) = λ(z − a)−k(z − b)−l.
Now there are three regions along the real axis. z < a, a < z < b and
z > b. We put two cuts, two vertical lines, one at a and one at b. When
z < a we get an argument

arg f ′(z) = arg λ− kπ − lπ.
When a < z < b the argument is

arg f ′(z) = arg λ− lπ.
Finally when z > b the argument is

arg f ′(z) = arg λ.

The easiest way to keep track of what is going on is to consider the
change in argument as we cross a branch point. At the start when z
is large and negative we describe a straight line with a slope given by
the angle arg λ − kπ − lπ. Then we turn through an angle of kπ at
the vertex u and we describe the straight line with angle arg λ − lπ.
Finally when we pass through b the angle increases by lπ and so we
turn through an angle of lπ at the vertex v and from there we describe
a sraight line of angle arg λ.

Note that we use negative exponents so that as we pass through a
branch point the argument increases.

Suppose that the vertices of the region correspond to the real num-
bers a1, a2, . . . , an−1. We suppose that ai is mapped to wi and ∞ is
mapped to wn. In this case the real line is the union of the inter-
vals (−∞, a1), (a1, a2), . . . , (an−2, an−1) and (an−1,∞) and the points
a1, a2, . . . , an−1. The interval [ai, ai+1] is supposed to be mapped to the
line segment connecting wi to wi+1. Again we orient the numbers so
that a1 < a2 < a3 < · · · < an−1.

Consider the vertices of the polygon w1, w2, . . . , wn. The line segment
from wn to w1 makes an angle with the real line. If we traverse this line
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segment then when we get to w1 and start to traverse the line segment
from w1 to w2 then we have to turn through an angle k1π. Then when
we get to the vertex w2 we have to turn through an angle k2π, and so
on.

This gives a differential equation that the biholomorphic function f
mapping the upper half plane to U must satisfy:

f ′(z) = λ(z − a1)−k1(z − a2)−k2 . . . (z − an−1)−kn−1

To make sense of the RHS we must put cuts, vertical lines in the
lower half plane starting at the points a1, a2, . . . , an−1. Let V be the
region you get by deleting these cuts, so that the RHS is a holomorphic
function on the region V .

Note that as go all the way around the polygon we have to turn
through a full 2π. The real numbers ki ∈ (−1, 1) and we have

2π = k1π + k2π + · · ·+ knπ

= (k1 + k2 + k3 + · · ·+ kn)π.

Thus
k1 + k2 + · · ·+ kn = 2.

Note that the last term, kn, corresponds to what happens at ∞.
To solve the differential equation, just pick a point b ∈ V . Given

another point z ∈ V , define an integral

F (z) =

∫ z

b

(s− a1)−k1(s− a2)−k2 . . . (s− an−1)−kn−1 ds

by integrating along a path connecting b to z. As the region V is simply
connected it follows that the integral does not depend on the choice of
path. F (z) is a holomorphic function on V .

As icing on the cake, we check that F (z) is continuous at the points
a1, a2, . . . , an−1. The only part of f ′(z) which is not holomorphic at
ai is the term (z − ai)−ki . The other terms are holomorphic. Let the
product of these terms be φ(z). We may write.

φ(z) = φ(ai) + (z − ai)ψ(z),

where ψ(z) is holomorphic in a neighbourhood of ai. It follows that

f ′(z) = (z − ai)−ki + (z − ai)1−kiψ(z).

Note that 1−ki > 0 so that the last term is continuous at ai. Therefore
the integral is continuous. On the other hand,

d

dz
(z − ai)1−ki = (1− ki)(z − ai)−ki .

This implies the integral is continuous at ai.
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The general form of the solution to the differential equation is then

f(z) = λF (z) + µ

where µ ∈ C is a constant.
As already mentioned there is no simple general formula for the

solution f(z). It is an interesting exercise to count constants. We may
assume that b = 0, λ = 1 and µ = 0. It is enough to show we get a
polygon P ′ which is similar to P . In this case adjusting µ matches up
one of the vertices and adjusting λ both rotates and rescales.

Now the choice of ki determines the angles of the polygon. Once we
have fixed these the polygon P ′ has the same angles as P . It remains to
determine the real numbers a1, a2, . . . , an−1. Now just because P and
P ′ have the same angles does not mean they are similar (this is only
true for triangles). In fact we need to fix n− 2 corresponding sides of
P and P ′ and require that the ratios between these common sides are
all equal. This gives n− 3 equations for a1, a2, . . . , an−1.

Thus we are free to specify two of these n− 1 real numbers and the
remaining n− 3 numbers are determined.
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