
20. The Poisson kernel and Dirichlet problem

Note that we haven’t solved Dirichlet’s problem yet. We started
with a holomorphic function on the closed unit disk. In other words,
we started by assuming we had a harmonic function on the closed unit
disk and we derived a formula for it using the Poisson kernel.

Now suppose we start with a continuous function h on the unit circle
and we try to solve the Dirichlet problem for h. It is a somewhat amaz-
ing fact that we can even deal with a slightly larger class of functions.
We can allow h to have finitely many discontinuities. In this case we
cannot expect u(r, θ) to extend to the boundary as a continuous func-
tion but we can expect it to extend away from the finitely many points
where h is not continuous.

Definition 20.1. Let h be a piecewise continuous function on the unit
circle and let ζ be a point of the unit circle. The average value of h
at ζ = eiθ0 is

1

2

(
lim
θ→θ−0

h(eiθ) + lim
θ→θ+0

h(eiθ)

)
.

Theorem 20.2. Let h be a piecewise continuous real valued function
on the unit circle.

Define a function u(r, θ) on the unit disk by the formula

u(r, θ) =
1

2π

∫ 2π

0

(1− r2)h(eiφ)

1− 2r cos(φ− θ) + r2
dφ.

Then u is a harmonic function on the unit disk, it extends to a
continuous function on the closed unit disk minus the points where h is
discontinuous and it is equal to h on the unit circle, minus the points
where h is discontinuous. If ζ = eiθ is a point on the unit disk where h
is not continuous then

lim
r→1

u(r, θ0)

is the average value of h at ζ = eiθ0.

Example 20.3. Suppose that

h(eiφ) =

{
0 if φ ∈ (0, π)

1 if φ ∈ (π, 2π).

Let us find a harmonic function u(r, θ) on this unit disk with these
boundary values. There are two ways to solve this problem. The first
uses the Poisson integral.
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We have

u(r, θ) =

∫ 2π

0

Pr(φ− θ)h(eiφ) dφ

=

∫ 2π

π

Pr(φ− θ) dφ.

We want to integrate

Pr(ψ) =
1− r2

1− 2r cos(ψ) + r2
.

One can check that the derivative of

2 arctan

(
1 + r

1− r
tan

ψ

2

)
with respect to ψ is Pr(ψ). It follows that

πu(r, θ) = arctan

(
1 + r

1− r
tan

2π − θ
2

)
− arctan

(
1 + r

1− r
tan

π − θ
2

)
.

If take tan of both sides and use some trigonometric identities the RHS
reduces to

u(r, θ) =
1

π
arctan

(
1− r2

2r sin θ

)
where arctan t ∈ [0, π].

The last expression speficies the choice of arctan we are using. It is
clear that u(r, θ) ∈ [0, 1].

It is interesting to check the boundary values. If θ 6= 0 and θ 6= π
then the expression

1− r2

2r sin θ
approaches zero. If θ ∈ (0, π) it approaches from above and the angle
given by the arctangent approaches 0. If θ ∈ (π, 2π) it approaches from
below and the angle given by the arctangent approaches π.

If θ = 0 or θ = π then the angle given by the arctangent is π/2, which
gives the value 1/2 for the limit of u. 1/2 is of course the average value
at these two angles.

Note that the value of u at the origin is the average value of h on
the circle. In our case the average value is 1/2 and this is indeed the
value of u at the origin.

For the second approach we need a simple:

Lemma 20.4. Let α : U −→ V be a holomorphic function between two
regions.

If v : V −→ R is a harmonic function on V then v ◦ α : U −→ R is
a harmonic function on U .
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Proof. As this problem is local there is no harm in assuming that v is
the real part of the holomorphic function g : V −→ C. Then

f = g ◦ α : U −→ C
is a holomorphic function and u is the real part of f . �

Let
α : ∆ −→ H

be the biholomorphic map

α(z) = i
1− z
1 + z

.

This maps the unit circle minus the point −1 to the real axis. The up-
per half semicircle gets sent to (0,∞) and the lower half semicircle gets
sent to (−∞, 0). The original problem is transformed to the problem
of finding a harmonic function on the upper half plane that extends to
a continuous function on the closure minus zero and that is 0 on (0,∞)
and 1 on (−∞, 0).

Consider the principal value of the logarithm

1

π
Logw =

1

π
ln ρ+ i

1

π
φ,

where w = ρeiφ, ρ > 0 and φ ∈ (0, π). This is holomorphic on the
upper half plane. Note that the imaginary part is a harmonic function
with the correct boundary values.

The imaginary part is

1

π
arctan

(v
u

)
,

where w = u+ iv.
Now

w = i
1− z
1 + z

= i
(1− z)(1 + z̄)

|1 + z|2

= i
1− |z|2 + z̄ − z
|1 + z|2

= i
1− x2 − y2 − 2iy

(x+ 1)2 + y2

=
2y + i(1− x2 − y2)

(x+ 1)2 + y2

= u+ iv.
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It follows that

u =
2y

(x+ 1)2 + y2
and v =

1− x2 − y2

(x+ 1)2 + y2
.

Thus
1

π
arctan

(
1− x2 − y2

2y

)
.

This is clearly compatible with the previous solution expressed in
polar coordinates.

It is possible to interpret (20.3) as various instances of problems from
physics. One can either imagine a thin sheet of metal in the shape of a
circle. The upper side is cooled to constant temperature 0 and the lower
side is heated to constant temperature 1. The solution to Laplace’s
equation then represents the distribution of heat in the metal in steady
state. Or one can imagine a long thin cylinder in space. The electric
potential on the upper half of the cylinder is zero and the potential on
the lower side of the cylinder is one. The two plates are separated by
a thin layer of insulation. As the cylinder is long and thin one can just
solve Laplace’s equation for a two dimensional slice with cross-section
the unit circle.

We now turn to a proof of (20.2). The fact that u(r, θ) is harmonic
is quite straightforward. Indeed u(r, θ) is harmonic if it satisfies the
polar form of Laplace’s equation, which involves partial derivatives
with respect to r and θ:

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0.

Consider

u(r, θ) =
1

2π

∫ 2π

0

(1− r2)h(eiφ)

1− 2r cos(φ− θ) + r2
dφ.

As we don’t integrate over either r or θ, if we differentiate with respect
to r and θ then we can bring the partial derivatives inside the integral
sign. As h(eiφ) does not depend on r and θ, the Laplacian applied to

h(eiφ)Pr(φ− θ)
is the same as the Laplacian applied to Pr(φ− θ), multiplied by h(eiφ).
But if we fix φ then Pr(φ − θ) is a harmonic function of r and θ,
by (19.2.c). So the Laplacian applied to the integrand is zero and so
the Laplacian applied to the integral is zero. It follows that u(r, θ) is
harmonic.

We now argue that u(r, θ) behaves properly on the boundary. Pick
a point ζ = eiφ0 on the boundary where h is continuous. We have to
show that if z is sufficiently close to ζ then u is sufficiently close to h.
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This means given ε > 0 we have to find δ > 0 such that if |z− ζ| < δ
then |u(r, θ)− h(eiφ)| < ε. Note that

u(r, θ)− h(eiφ0) =
1

2π

∫ 2π

0

Pr(φ− θ)h(eiφ) dφ− h(eiφ0)
1

2π

∫ 2π

0

Pr(φ− θ) dφ

=
1

2π

∫ 2π

0

Pr(φ− θ)h(eiφ) dφ− 1

2π

∫ 2π

0

Pr(φ− θ)h(eiφ0) dφ

=
1

2π

∫ 2π

0

Pr(φ− θ)(h(eiφ)− h(eiφ0)) dφ

= I1 + I2.

We are going to break up the integral into two pieces. The first
integral is over a small arc centred around φ0 and the second integral
is over the rest of the unit circle. The first integral will be small as
h(eiφ)−h(eiφ0) is small. The second integral will be small as the integral
of the Poisson kernel is small.

We may pick α > 0 so that if

|h(eiφ)− h(eiφ0)| < ε

2
whenever |φ− φ0| < α.

Let

I1 =
1

2π

∫ φ0+α

φ0−α
Pr(φ− θ)(h(eiφ)− h(eiφ0)) dφ

I2 =
1

2π

∫ φ0−α+2π

φ0+α

Pr(φ− θ)(h(eiφ)− h(eiφ0)) dφ.

We have

|I1| ≤
1

2π

∫ φ0+α

φ0−α
Pr(φ− θ)|h(eiφ)− h(eiφ0)| dφ

≤ ε

2

(
1

2π

∫ φ0+α

φ0−α
Pr(φ− θ) dφ

)
≤ ε

2

(
1

2π

∫ 2π

0

Pr(φ− θ) dφ

)
=
ε

2
.

For I2, note that |h(eiφ)− h(eiφ0)| is bounded on the circle:

|h(eiφ)− h(eiφ0)| ≤M.

Suppose that

|θ − φ0| <
α

2
.
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If φ ∈ [φ0 + α, φ0 − α + 2π] then

|θ − φ| > α

2
.

and so the denominator of the Poisson kernel

1− r2

1− 2r cos(φ− θ) + r2

is bounded away from zero, say by m.
We have

|I2| ≤
1

2π

∫ φ0−α+2π

φ0+α

Pr(φ− θ)|h(eiφ)− h(eiφ0)| dφ

≤ (1− r2)M
2πm

2π

≤ (1− r)(1 + r)M

m

≤ 2M

m
δ

=
ε

2
,

provided

|1− r| < δ where δ =
mε

4M
.

Putting all of this together we get

|u(r, θ)− h(eiφ0)| = |I1 + I2|
≤ |I1|+ |I2|

≤ ε

2
+
ε

2
= ε.

Note that the Poisson has a spike close to eiφ0 , meaning r is close to
1 and θ is close to φ0, and most of the integral is concentrated there.
For example, consider the graph of the Poisson integral when θ = 0,
so the peak is at 0. The axes go from −π to π. The yellow curve is
r = 1/4, the blue curve is r = 1/2, the green curve is r = 3/4 and the
red curve is r = 7/8:
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