
18. Meromorphic versus Rational functions

One obvious way to give a meromorphic function on C is to write
down a rational function, the quotient of two polynomials. It is natural
to wonder to what extent these give all meromorphic functions on C:

Theorem 18.1. Let f be a meromorphic function on the whole of C.
Then f is a rational function if and only if it has at worse a pole at

infinity.

Here we allow the possibility that f is holomorphic at infinity.
It is clear that we need the condition at infinity. For example the

exponential function

z −→ ez

is an entire function but it is is not a rational function. In fact it has
an essential singularity at infinity.

We will need:

Definition 18.2. Let f be a holomorphic function with an isolated
singularity at a.

The principal part of f at a is the negative part of the Laurent
series expansion of f at a.

Proof of (18.1). One direction is clear. If

f(z) =
p(z)

q(z)

is a rational function then

f

(
1

z

)
=
p(1/z)

q(1/z)
.

The RHS expands to a rational function in z. In particular f(z) has a
pole at infinity.

Now suppose that f(z) is a meromorphic function with a pole at
infinity. First observe that f(z) has only finitely many singularities.
Isolated singularities cannot accumulate anywhere. If there were in-
finitely many singularities their modulus would have to go to infinity.
But as we have a pole at infinity this cannot happen either.

Let w = 1/z. By assumption

f(w) =
a−n
wn

+
a−n+1

wn−1 + · · ·+ a0 + a1w + . . . .

The principal part at w = 0 is then
a−n
wn

+
a−n+1

wn−1 + · · ·+ a−2
w2

+
a−1
w
.
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If we subsitute back in z = 1/w then we get a polynomial in z, p∞(z).
Let a1, a2, . . . , am be the finitely many other singular points. Let

pai(z) be the principal part at ai. Then pai(z) is a polynomial in 1/(z−
ai).

Consider

g(z) = f(z)− p∞(z)− pa1(z)− pa2(z)− · · · − pam(z).

Note that

p∞(z) + pa1(z) + pa2(z) + · · ·+ pam(z).

is a rational function in z, since it is a sum of rational functions. In
particular it is a meromorphic function so that g(z) is a meromorphic
function.

The only possible poles of g(z) are at a1, a2, . . . , am. But by con-
struction the principal part of g(z) at ai is zero. Therefore g(z) is
holomorphic at ai, so that it is an entire function.

On the other hand, g(z) does not have a pole at infinity either.
Therefore g(z) is bounded as z approaches infinity. But then Liouville’s
theorem implies that g(z) is a constant c. It follows that

f(z) = p∞(z) + pa1(z) + pa2(z) + · · ·+ pam(z) + c,

is a rational function. �

It seems worth pointing out the decomposition above in p∞ and pa1 ,
pa2 , . . . , is essentially the decomposition of a rational function into
partial fractions.

Example 18.3. Obtain the partial fraction decomposition of

z3

z2 + 1
.

The first thing to do is figure out the term p∞(z). We could subsi-
tute w = 1/z, find the Laurent series expansion and then isolate the
principal part. Much easier is to use the division algorithm. We try to
divide z2 + 1 into z3. We get z with a remainder of

z3 − z(z2 + 1) = −z so that
z3

z2 + 1
= z − z

z2 + 1
.

Thus p∞(z) = z. Now

− z

z2 + 1
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has poles at ±i. We have simple poles there and so

− z

z2 + 1
= pi(z) + p−i(z)

=
α

z − i
+

β

z + i
.

Now α is the residue at i and β is the residue at −i. We have

α = lim
z→i
− z

2z

= −1

2
.

It is clear the answer won’t change at −i. Thus

z3

z2 + 1
= z − 1

2

1

z − i
− 1

2

1

z + i
.

Of course we could do the last step using one of the usual methods.
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