18. MEROMORPHIC VERSUS RATIONAL FUNCTIONS

One obvious way to give a meromorphic function on C is to write
down a rational function, the quotient of two polynomials. It is natural
to wonder to what extent these give all meromorphic functions on C:

Theorem 18.1. Let f be a meromorphic function on the whole of C.
Then f is a rational function if and only if it has at worse a pole at
infinity.

Here we allow the possibility that f is holomorphic at infinity.
It is clear that we need the condition at infinity. For example the
exponential function

z —> e°

is an entire function but it is is not a rational function. In fact it has
an essential singularity at infinity.
We will need:

Definition 18.2. Let f be a holomorphic function with an isolated
singularity at a.

The principal part of f at a is the negative part of the Laurent
series expansion of f at a.

Proof of (18.1]). One direction is clear. If

is a rational function then
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The RHS expands to a rational function in z. In particular f(z) has a
pole at infinity.

Now suppose that f(z) is a meromorphic function with a pole at
infinity. First observe that f(z) has only finitely many singularities.
Isolated singularities cannot accumulate anywhere. If there were in-
finitely many singularities their modulus would have to go to infinity.
But as we have a pole at infinity this cannot happen either.

Let w = 1/z. By assumption
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The principal part at w = 0 is then
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If we subsitute back in z = 1/w then we get a polynomial in z, p(z).

Let ay,as,...,a, be the finitely many other singular points. Let
Pa; (2) be the principal part at a;. Then p,,(2) is a polynomial in 1/(z —
CLi).

Consider

9(2) = f(2) = Poc(2) = Pay (2) = Pay(2) = -+ = Pa,, (2)-

Note that

Poo(2) + Pay (2) + Pay(2) + -+ - + Pa,,, (2)-

is a rational function in z, since it is a sum of rational functions. In
particular it is a meromorphic function so that g(z) is a meromorphic
function.

The only possible poles of g(z) are at a1, as,...,a,. But by con-
struction the principal part of g(z) at a; is zero. Therefore g(z) is
holomorphic at a;, so that it is an entire function.

On the other hand, g(z) does not have a pole at infinity either.
Therefore g(z) is bounded as z approaches infinity. But then Liouville’s
theorem implies that g(z) is a constant c¢. It follows that

f(Z) = pOO(Z) +pa1<z) +pa2(z) +e +pam(z) +c,

is a rational function. O

It seems worth pointing out the decomposition above in p., and p,,,
Dasys ---, is essentially the decomposition of a rational function into
partial fractions.

Example 18.3. Obtain the partial fraction decomposition of

23
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The first thing to do is figure out the term p(z). We could subsi-
tute w = 1/z, find the Laurent series expansion and then isolate the

principal part. Much easier is to use the division algorithm. We try to
divide 22 + 1 into 23. We get z with a remainder of
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Thus poo(z) = z. Now
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has poles at +7. We have simple poles there and so
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Now « is the residue at ¢+ and f is the residue at —i. We have
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It is clear the answer won’t change at —i. Thus
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Of course we could do the last step using one of the usual methods.
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