15. Holomorphic maps of the unit disc

Theorem 15.1 (Schwarz's Lemma). Let

$$f: \Delta \longrightarrow \mathbb{C}$$

be a holomorphic map on the unit disk.

If $|f(z)| \le 1$ on the unit disk and f(0) = 0 then

$$|f(z)| \le |z|$$
 on Δ ,

with equality at some point $a \in \Delta$, $a \neq 0$, if and only if $f(z) = \lambda z$, for some complex number λ with $|\lambda| = 1$.

Proof. Consider the meromorphic function

$$g: \Delta \longrightarrow \mathbb{C}$$
 given by $g(z) = \frac{f(z)}{z}$.

It is clear that g(z) is holomorphic, except possibly at 0.

As f(z) is zero at 0, it follows that f(z) = zh(z) where h(z) is holomorphic at 0. If we compare equations then we get g(z) = h(z), so that g(z) is in fact holomorphic at 0.

Consider g(z) on the closed disk of radius r, where $r \in (0,1)$. g(z) is holomorphic on this closed disk and so it is continuous on the boundary. It follows that it achieves its maximum on the boundary. But

$$|g(z)| = \left| \frac{f(z)}{z} \right|$$
$$= \frac{|f(z)|}{|z|}$$
$$\leq \frac{1}{r},$$

on the boundary. It follows that

$$|g(z)| \le \frac{1}{r},$$

on the closed disk of radius r. If we let r approach 1 from below then we get

$$|g(z)| \le 1$$

on the unit disk. But then

$$|f(z)| \le |z|$$
 on Δ .

Now suppose we get equality, so that

$$|f(a)| = |a|.$$

In this case |g(a)| = 1 and so the strict maximum principle implies that g is constant. Suppose that $g(z) = \lambda$ for all z. Then

$$f(z) = \lambda z$$
 where $|\lambda| = 1$.

Here is a variant of Schwarz's Lemma with an arbitrary circle:

Lemma 15.2. If f(z) is holomorphic on the open disk

$$U = \{ z \in \mathbb{C} \mid |z - a| < R \}$$

of radius R centred about a,

$$|f(z)| \le M$$
 and $f(a) = 0$,

then

$$|f(z)| \le \frac{M}{R}|z - a|$$

on U, with equality if and only if f(z) is a multiple of z - a.

Proof. The idea is to reduce this to Schwarz's Lemma. Consider the map

$$\alpha: z \longrightarrow Rz + a.$$

This sends the unit disk to the disk U. Now consider the map

$$\beta \colon z \longrightarrow z/M.$$

The sends the disk of radius M centred at 0 to the unit disk. Both α and β are Möbius transformations.

It follows that if we put

$$q = \beta \circ f \circ \alpha \colon \Delta \longrightarrow \mathbb{C},$$

then g is a holomorphic function, as it is the composition of holomorphic phic functions,

$$g(0) = \beta(f(\alpha(0)))$$

$$= \beta(f(a))$$

$$= \beta(0)$$

$$= 0,$$

and

$$|g(w)| \le 1.$$

We apply (15.1) to the function g. We conclude that

$$|g(w)| \le |w|,$$

with equality if and only if g(w) is a multiple of w. The inverse of β is

$$z \xrightarrow{}_2 Mz$$

If we apply the inverse of β to both sides we get

$$|(f \circ \alpha)(w)| \le |M||w|.$$

Pick $z \in U$. If we put

$$w = \frac{z - a}{R},$$

then $w \in \Delta$ and $\alpha(w) = z$. We have

$$\begin{aligned} |f(z)| &= |f(\alpha(w))| \\ &\leq M|w| \\ &= \frac{M}{R}|z-a|. \end{aligned}$$

Now suppose we have equality. Then |g(w)| = |w|, so that

$$g(w) = \lambda w$$

for some complex number of unit length. It follows that

$$f(z) = Mg(w)$$

$$= (M\lambda)w$$

$$= \frac{M\lambda}{R}(z - a).$$

There is also a version involving derivatives:

Theorem 15.3. Let

$$f: \Delta \longrightarrow \mathbb{C}$$

be a holomorphic map on the unit disk.

If $|f(z)| \le 1$ on the unit disk and f(0) = 0 then

$$|f'(0)| \le 1$$

with equality if and only if $f(z) = \lambda z$ for some complex number λ with $|\lambda| = 1$.

Proof. We have

$$|f'(0)| = \left| \lim_{z \to 0} \frac{f(z)}{z} \right|$$

$$= \lim_{z \to 0} \left| \frac{f(z)}{z} \right|$$

$$= \lim_{z \to 0} \frac{|f(z)|}{|z|}$$

$$\leq \lim_{z \to 0} 1$$

$$= 1.$$

This establishes the inequality. Now suppose we have equality. As in the proof of (15.1), we have

$$f(z) = zg(z)$$

where g(z) is holomorphic. It follows that

$$f'(0) = g(0).$$

If

$$|f'(0)| = 1$$

then

$$|g(0)| = 1$$

and so g(z) is constant, by the strict maximum principle. But then $f(z) = \lambda z$, where $\lambda = f'(0)$.