
11. The argument principle

Definition 11.1. Let f : U −→ C be a function on a region U .
We say that f is meromorphic on U if it has only isolated singu-

larities on U , all of which are poles.
The order of a meromorphic function at a point a, denoted

orda f(z), is the order of zero of f(z) at a, if f(z) is holomorphic at a
and otherwise it is minus the order of the pole of f(z) at a.
N0 is the sum of the order of all of the zeroes and N∞ is the sum of

all of the orders of the poles.

N0 counts the number of zeroes, according to multiplicity and N∞
counts the number of poles, according to multiplicity.

If one of N0 and N∞ is finite then N0 −N∞ is the sum of the order
of all points of U (most points of U have zero order and make no
contribution to the sum).

Let f : U −→ C be a meromorphic function on a region U . Let γ be
a piecewise differentiable path in U such that f(z) is holomorphic and
f(z) 6= 0 on γ. The integral

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫
γ

d log f(z)

is called the logarithmic integral of f(z) along γ.
The logarithmic integral measures the change in the logarithm along

a path. This quantity is suprisingly useful:

Theorem 11.2. Let U be a bounded region whose boundary γ = ∂U is
piecewise smooth.

If f is a meromorphic function on U that is holomorphic and non-
zero on ∂U then

1

2πi

∫
γ

f ′(z)

f(z)
dz = N0 −N∞.

Proof. Since f(z) is holomorphic on ∂U , it has finitely poles inside U
and since it is non-zero on ∂U it has finitely many zeroes.

Consider

g(z) =
f ′(z)

f(z)
.

Then the only singularities of g(z) are where f(z) has singularities or
where f(z) is zero. Thus g(z) has finitely many isolated singularities
in U and g(z) is holomorphic on ∂U .

Therefore we may apply the Residue Theorem to g(z):

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a

Resa g(z).
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Pick a point a ∈ U . We may write

f(z) = (z − a)nh(z)

where n is the order of a and h(z) is holomorphic at a and non-zero at
a. Note that

f ′(z) = n(z − a)n−1h(z) + (z − a)nh′(z).

It follows that

g(z) =
f ′(z)

f(z)

=
n(z − a)n−1h(z) + (z − a)nh′(z)

(z − a)nh(z)

=
nh(z) + (z − a)h′(z)

(z − a)h(z)

=
n

z − a
+
h′(z)

h(z)
.

Note that the second term is holomorphic at a. We can now compute
the residue at a:

Resa g(z) = n.

Putting this back into the residue theorem we get

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a

Resa g(z)

=
∑
a

orda f(z)

= N0 −N∞. �

Let us look more carefully at the logarithmic integral. As

log f(z) = ln |f(z)|+ i arg f(z)

we have
d log f(z) = d ln |f(z)|+ d arg f(z).

Therefore
1

2πi

∫
γ

d log f(z) =
1

2πi

∫
γ

d ln |f(z)|+ 1

2π

∫
γ

d arg f(z).

Now the first integral on the RHS is not so complicated. As there is
no ambiguity in the definition of ln |f(z)| it follows that∫

γ

d ln |f(z)| = ln |f(β)| − ln |f(α)|

= ln |f(b)| − ln |f(a)|,
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where

γ : [α, β] −→ U

and a = γ(α), b = γ(β) are the endpoints of γ. The key point is that
this integral does not depend on the curve γ only the endpoints.

The second integral is much more subtle, since the value of the inte-
gral depends not only on the endpoints but also on the way to get from
a to b. The second integral measures the change in the argument
along the curve f ◦ γ.

If γ is closed curve, that is, a = b then the first integral disappears
and the second integral is an integer, equal to N0 −N∞.

Example 11.3. Calculate the change in the argument for the function

z −→ z2

if we go around the unit circle.

It is natural to divide the unit circle into two pieces, the bit in the
upper half plane and the piece in the lower half. If we go around the
top, from 1 to −1 the change in the argument for z is π but for z2 is
2π. Now when we go around the lower half plane, the argument for z
goes from π to 2π and the change is π. For z2 we go from 2π to 4π
(or we go from 0 to 2π, we only care about the change). The change is
again to 2π.

In total then the change in the argument is 4π. If we divide by 2π
then we get 2, accounting for the fact that we go twice around the
circle.

Example 11.4. Calculate the change in the argument for the function

z −→ zn

if we go around the unit circle.

Suppose first that n > 0. Now we divide the circle into n pieces, from
1 to e2πi/n, and so on. Over each piece the change in the argument is
2π. In total the change in the argument is 2πn. If we divide by 2π we
get n, representing the fact that we go around the unit circle n times.

In fact we could have calculated the change in the argument by using
(11.2). The function z −→ z2 is holomorphic on the closed unit disc.
It has one zero at z = 0 but the order is 2 and so

N0 −N∞ = 2− 0,

the number of times we go around the circle. For the function z −→ zn

we have a zero of order n.
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Now suppose n < 0. As before we divide the circle into n pieces but
now we go around the circle backwards, clockwise, instead of anticlock-
wise. So the change in the argument is now −2π on each piece, making
a total of −2πn. Dividing by 2π we go around the circle n times, but
clockwise, accounting for the minus sign. This is again consistent with
(11.2). Indeed z −→ zn now has no zeroes and one pole at the origin,
of order n. We have

N0 −N∞ = 0− n = −n.

Example 11.5. How many roots does the polynomial

p(z) = z6 + 9z4 + z3 + 2z + 4

have in the first and in the second quadrants?

Consider

p(x) = x6 + 9x4 + x3 + 2x+ 4.

If x ≥ 0 then this is positive. If x ∈ [−1, 0] then

4 + 2x+ x3 > 0 so that p(x) > 0.

If x ≤ −1 then

9x4 + x3 + 2x > 0 so that p(x) > 0.

Thus p(z) has no real zeroes.
As p(z) has real coefficients it roots come in complex conjugate pairs.

Thus three roots lie in the upper half plane and three roots lie in the
lower half plane.

Let U be the intersection of the open disk of radius R centred around
the origin lying in the first quadrant. We now estimate the change in
the argument if we go around the boundary of U , when R is large.

We break the boundary into three pieces,

γ = γ1 + γ2 + γ3.

γ1 is the straight line from 0 to R along the real axis. As p(z) has
real coefficients p(z) is real along γ1 and there is no change in the
argument. γ2 is the arc of the circle from 0 to iR. If R is sufficiently
large then the dominant term is z6 and so the change in the argument
is approximately

6
π

2
= 3π.

γ3 is is the vertical line segment from iR down to 0. We use the
parametrisation

γ3(y) = iy where y ∈ [0, R].
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It follows that

p(iy) = −y6 + 9y4 + 4 + i(−y3 + 2y).

When y = R the dominant term is

−y6 = −R6 < 0.

The dominant term for the imaginary part of p(iy) is

−y3 = −R3 < 0.

So at iR the argument is approximately π and p(iR) belongs to the
third quadrant.

When y is close to zero p(iy) is close to 4. The dominant imaginary
term is 2y and so we approach 4 from above, in the first quadrant. The
argument is zero at the end.

The final thing is to decide how we got from the third quadrant to
4. We just have to keep track of where we cross the real line. This is
when the imaginary part is zero, that is, when

y3 = 2y so that y = 0,
√

2,−
√

2.

y = 0 at the end and y is never negative and so we only cross the
x-axis once in between, when y =

√
2. In this case the real part is

equal to

−(
√

2)6 + 9(
√

2)4 + 4 = −8 + 32 + 4

= 36 > 0.

The only possibility is that we go from the third quadrant to the
fourth quadrant up to y =

√
2. The change in the argument is roughly

π. From there we go into the first quadrant. Since we start and end
on the real axis, the change in the argument is 0.

So the total change in the argument is approximately 4π all the way
along γ. As the change in the argument is a multiple of 2π the only
possibility is that the change in the argument is exactly 4π.

It follows that
N0 −N∞ = 2.

As p(z) is holomorphic, N∞ = 0 and so p(z) has two zeroes in the first
quadrant.

As it has three zeroes in the upper half plane and no zeroes on the
imaginary axis, it follows that it has one zero in the second quadrant.
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