
1. Review

We start by reviewing the contents of 120A. We are interested in
studying functions of one complex variable. The first big difference in
comparison with real variable is that the geometry of the domain of
the function plays a much more important role.

The key object is an open disk,

{ z ∈ C | |z − a| < r }.

This is the open disk of radius r centred at a. A set U is open if
it is a union of open disks. A set U is a region if it is connected and
open.

All of the basic properties are expressed in terms of open disks. A
power series centred at a is an expression of the form∑

an(z − a)n,

where a1, a2, . . . is a sequence of complex numbers. Given any power
series there is a quantity, R ∈ [0,∞], either a non-negative real number
or ∞, with the following property:

• The power series converges for any point inside the open disk
of radius R centred at a.
• The power series diverges for any point ouside the closed disk

of radius R centred at a.
• The power series converges uniformly away from the boundary,

the circle of radius R centred at a.

Nothing can be said about what happens on the circe |z − a| = R
(except that there is at least one point where the power series is not
holomorphic on this circle).

There is even an expression for R in terms of a1, a2, . . . . Power series
are the next best thing to polynomials. You can manipulate power
series like polynomials, for example you can add and multiply power
series.

Example 1.1.

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ . . . .

The radius of convergence is ∞.

Example 1.2.
1

1− z
= 1 + z + z2 + z3 + . . . .
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The radius of convergence is 1. We can build up power series for
many other functions from the standard power series.

We say that a function f : U −→ C is analytic on a region U , if
given any point b ∈ U we can find a power series

∑
an(z − a)n such

that b is inside the open disk where
∑
an(z − a)n converges. It turns

out that one can even centre the power series at b.
The definition of a power series might seem abstract until one starts

to think about a concrete example:

Example 1.3.
1

sin z
is analytic on the open set

{ z ∈ C | z 6= mπ }
the locus where sin z is not zero. What is the power series expansion
about the point 3 + 4i?

We say a function f(z) is differentiable at a point a if

lim
z→a

f(z)− f(a)

z − a
exists. We use the standard notation for derivatives and all of the usual
rules apply.

We say that f(z) is holomorphic at a if there is some open disk
centred at a and f(z) is differentiable at every point b of a.

The property of being holomorphic involves taking two dimensional
limits. If we take a limit simply by approaching horizontally or ap-
proaching along vertically and equate the two answers we get the
Cauchy Riemann equations:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
,

where f = u+ iv.
One of the simplest family of holomorphic functions are Möbius

transformations:

z −→ az + b

cz + d
where a, b, c and d are complex numbers and ad − bc 6= 0. This map
is holomorphic except at −d/c. By convention this sends −d/c to ∞
and ∞ to a/c. Möbius transformations send lines and circles to lines
and circles, but they tend to mix the two up. Given a pair of triples a,
b and c and a′, b′ and c′ of extended complex numbers C ∪ {∞}, there
is a unique Möbius transformation carrying one to the other.
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The main result of the course is then:

Theorem 1.4. Let f : U −→ C be a function on a region U .
f is holomorphic on U if and only if it is analytic on U .

To see that analytic implies holomorphic, we just need to check that
a power series is differentiable wherever it converges. We can compute
the derivative of a power series term by term:

d

dz

∑
an(z − a)n =

∑
nan(z − a)n−1.

The reason this is true is quite subtle (and, confession, hides a con-
ceptual mistake I made in 120A). We want to use the property of
uniform continuity.

It is true that if you have uniform convergence then one can automat-
ically integrate term by term. It is not true that one can automatically
differentiate term by term; there are examples in real variable where
this fails.

One can differentiate term by term if we have uniform convergence
of the derivative. It is not hard to use the formula for the radius of
convergence to conclude that the power series for the derivative has the
same radius of convergence.

To make matters worse (or better, matters better), one can differ-
entiate term by term in complex variable, but the reasons why this is
allowed use integration.

To show the reverse direction of (1.4) we need to use line integrals.
If γ : [α, β] −→ U is a differentiable path in the complex plane and f(z)
is continuous on U then we have∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ LM,

where L is the length of γ and M is the maximum value of |f(z)| on γ.
There are a number of results proved by Cauchy. Let U be an open

set whose boundary ∂U is piecewise differentiable. Let f(z) be a holo-
morphic function on U ∪ ∂U . We have Cauchy’s theorem:∫

∂U

f(z) dz = 0,

which follows from Green’s theorem and the Cauchy-Riemann equa-
tions, Cauchy’s integral formula

f(a) =
1

2πi

∫
∂U

f(z)

z − a
dz = 0,
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which follows from Cauchy’s theorem, and Cauchy’s formula

f (n)(a) =
n!

2πi

∫
∂U

f(z)

(z − a)n+1
dz = 0,

which follows from expanding Cauchy’s integral formula as a geomet-
ric series and integrating term by term. The same trick shows that
holomorphic implies analytic and we have

an =
1

2πi

∫
∂U

f(z)

(z − a)n+1
dz = 0.

In fact, we can use Cauchy’s formula to justify that we can differ-
entiate term by term (or better that if fn(z) tends uniformly to f(z)
then f ′n(z) tends uniformly to f ′(z)).

We can use estimates to prove some basic results. For example,
Liouville’s theorem says that if f(z) is an entire function and it is
bounded then it is constant. Just integrate around larger and larger
circles to conclude that an = 0 for n > 0.

The final topic is Laurent series. If f(z) is holomorphic on the an-
nulus

U = { z ∈ C | s < |z − a| < r }
then it has a Laurent series expansion

f(z) = · · ·+ a−3
(z − a)3

+
a−2

(z − a)2
+

a−1
(z − a)

+ a0 + a1(z − a) + a2(z − a)2 + a3(z − a)3 + . . .

=
∑
n<0

an(z − a)n +
∑
n≥0

an(z − a)n

= f∞(z) + f0(z),

where f0(z) is represented by a power series which converges for |z −
a| < r and f∞(z) is represented by a series which converges for |z−a| >
s and vanishes at ∞.

Perhaps one of the interesting cases to apply this is when s = 0, so
that f(z) has an isolated singularity at a. Isolated singularities come
in three types:

Removable: In fact an = 0 if n < 0 (so that f∞(z) = 0). In this
case f(z) extends to a holomorphic function at a. This is equivalent to
saying f(z) is bounded near a.

Pole of order n: am = 0 if m < n and an 6= 0.

f(z) =
a−n

(z − a)n
+

a−n+1

(z − a)n−1
+ . . . .

f(z) tends to infinity as z approaches a.
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Essential singularity: Infinitely many negative coefficients are
non-zero. f(z) gets arbitrarily close to every complex number, as z
approaches a.

If f(z) has an isolated singularity at a the residue of f(z) at a is a−1,
the coefficient of (z − a)−1. The residue theorem states that if f(z)
has isolated singularities a1, a2, . . . , an on a region U and is otherwise
holomorphic on U ∪ ∂U then∫

∂U

f(z) dz = 2πi
n∑
i=1

Resai f(z).
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