HOMEWORK 1, DUE WEDNESDAY APRIL 8TH, 12PM

Calculate:

1. $\int_0^\infty \frac{\mathrm{d}x}{(x^2+1)^2}.$ 2. $\int_0^\infty \frac{\mathrm{d}x}{x^4+1}.$ 3. $\int_0^\infty \frac{\mathrm{d}x}{x^6+1}.$ 4. $\int_{-\infty}^\infty \frac{\mathrm{d}x}{x^2+2x+2}.$ 5. $\int_0^\infty \frac{\mathrm{d}x}{x^3+1},$

by integrating over the countour which consists of the line segment from 0 to R, the arc of the circle from R to $Re^{2\pi i/3}$ and the line segment from $Re^{2\pi i/3}$ to 0.

6.
$$\int_{-\infty}^{\infty} \frac{x \sin x \, \mathrm{d}x}{(x^2 + 1)(x^2 + 4)}.$$

$$\int_{-\infty}^{\infty} \frac{\sin x \, \mathrm{d}x}{x^2 + 4x + 5}.$$

Show that:

8.

$$\int_0^\infty \frac{\cos ax}{(x^2 + b^2)^2} dx = \frac{\pi}{4b^3} (1 + ab)e^{-ab} \quad \text{where} \quad a > 0, b > 0.$$

Challenge Problems: (Just for fun)

9. $\int_0^\infty \frac{x^{2m}}{x^{2n}+1} dx = \frac{\pi}{2n} \csc\left(\frac{2m+1}{2n}\pi\right)$

where m and n are integers such that $0 \le m < n$.