
TAKE HOME FINAL EXAM

MATH 120B, UCSD, SPRING 20

You have 24 hours.

There are 7 problems, and the total number of points is 110.

Please make your work as clear and easy to follow as possible. There

is no need to be verbose but explain all of the steps, using your own

words. You may consult the lecture notes and model answers but you

may not use any other reference nor may you confer with anyone. You

may use any of the standard results in the lecture notes as long as you

clearly state what you are using. If you don’t know how to solve the

whole problem answer the portion you can solve.

Please submit your answers on Gradescope by 1pm on Thursday

June 11th.
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1. (10pts) Show that u(x, y) = e−3x cos 3y is harmonic and find a
harmonic conjugate.
There are two ways to approach this question. The first is just to guess
a holomorphic function whose real part is u. One obvious thing to try
(with perhaps a little bit of trial and error) is

f(z) = e−3z.

In this case

e−3z = e−3(x+iy)

= e−3xe−3iy

= e−3x(cos 3y − i sin 3y)

= e−3x cos 3y − ie−3x sin 3y.

It follows that the real part is

e−3x cos 3y = u(x, y).

Thus u is harmonic, as it is the real part of a holomorphic function. A
harmonic conjugate is given by the imaginary part, which is

v(x, y) = −e−3x sin 3y.

We can also check directly that u is harmonic. We have

∂u

∂x
= −3e−3x cos 3y and

∂u

∂y
= −3e−3x sin 3y.

Therefore

∆u =
∂2u

∂x2
+

∂2u

∂y2

= 9e−3x cos 3y − 9e−3x cos 3y

= 0.

Thus u is harmonic.
To find a harmonic conjugate, we can solve the Cauchy-Riemann equa-
tions:

∂v

∂y
= −3e−3x cos 3y and

∂v

∂x
= 3e−3x sin 3y.

If we integrate the first equation with respect to y then we get

v(x, y) =

∫

−3e−3x cos 3y dy

= −e−3x sin 3y + h(x).
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Here h(x) is a constant of integration that depends on x. If we plug
this into the second equation we get

h′(x)− 3e−3x sin 3y = −3e−3x sin 3y.

Thus we can take h(x) = 0 and v(x, y) = −e−3x sin 3y, the same answer
as before.
2. (10pts) Let

f : U −→ C given by f(z) = z4.

As z −→ z4 is an entire function it follows that f is holomorphic. As

H = { z ∈ C | 0 < Arg(z) < π }
and the map z −→ z4 multiplies the argument by 4 it follows that the
image of U is H. We can define a holomorphic branch of z −→ z1/4 on
C− (−∞, 0], by using the principal value of the logarithm on V ,

Log z = ln |z|+ iArg(z) where Arg(z) ∈ (−π, π).

Thus f defines a biholomorphic map between U and H.
Now we are looking for a biholomorphic map of the upper half plane
to the unit disk. The Möbius transformation

M(z) =
z − i

z + i

sends 0 to −1, ∞ to 1 and 1 to

1− i

1 + i
=

(1− i)(1− i)

2
= −i.

Note that −1, 1 and −i are three points of the unit circle. As Möbius
transformations send lines and circles to lines and circles, and three
points determine a circle it follows that M sends the real axis to the
unit circle.
As i is sent to zero, it follows that the upper half plane is sent to the
unit disk. Hence the map

z −→ z4 − i

z4 + i

defines a biholomorphic map between U and ∆.
3. (20pts) For the Bromwich integral, we have to compute the sum of
the residues of estF (s).
(a)

s− 1

s3 + 2s2 + s
2



has isolated singularities at the zeroes of

s3 + 2s2 + s = s(s+ 1)2.

Thus estF (s) has a simple pole at 0 and a double pole at −1. We have

Res0 e
stF (s) = lim

s→0

(s− 1)est

(s+ 1)2

= −1.

We also have

Res−1 e
stF (s) = lim

s→−1

d

ds

(

(s− 1)est

s

)

= lim
s→−1

d

ds

(

est − est

s

)

= lim
s→−1

(

test − tsest − est

s2

)

= te−t + te−t + e−t

= (1 + 2t)e−t.

The Laplace transform is therefore:

f(t) = Res0 e
stF (s) + Res−1 e

stF (s)

= −1 + (1 + 2t)e−t.

(b)
1

s+ a
has a simple pole at s = −a. We have

Res−a e
stF (s) = lim

s→−a
est

= e−at.

(c)
1

(s+ a)2

has a double pole at s = −a. We have

Res−a e
stF (s) = lim

s→−a

d

ds
est

= lim
s→−a

test

= te−at.
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(d)

F (s) =
s− 1

s3 + 2s2 + s
has a simple pole at s = 0 and a double pole s = −1. For the principal
part at s = 0 and s = −1 we have

P0(s) =
α

s
and P−1(s) =

β

(s+ 1)2
+

γ

s+ 1
.

We have

α = Res0 F (s)

= lim
s→0

s− 1

(s+ 1)2

= −1,

we also have

β = Res−1(s+ 1)F (s)

= Res−1
s− 1

s(s+ 1)

= lim
s→−1

s− 1

s
= 2,

and finally

γ = Res−1 F (s)

= lim
s→−1

d

ds

s− 1

s

= lim
s→−1

1

s2

= 1.

It follows that

F (s) = P0(s) + P−1(s)

= −1

s
+

2

(s+ 1)2
+

1

s+ 1
.

Linearity of the Laplace transform and (b) and (c) imply that the
inverse Laplace transform is

f(t) = −1 + 2te−t + e−t,

the same as in part (a).
4



4. (20pts) We first suppose that α > 0 and β > 0. We integrate

f(z) =
zeiαz

z2 + β2

over the standard contour γ = γ1 + γ2, where γ1 describes the interval
from −R to R along the real axis and γ2 is the semicircle of radius R
in the upper half plane starting at R and ending at −R. f(z) has poles
at ±iβ. Only the pole at iβ is in the upper half plane. We assume that
R > β so that we capture this isolated singularity.
As we have a simple pole, the residue at iβ is:

Resiβ f(z) = lim
z→iβ

z(z − iβ)eiαz

z2 + β2

= lim
z→iβ

zeiαz

z + iβ

=
iβe−αβ

iβ + iβ

=
e−αβ

2
.

The residue theorem implies that
∫

γ

zeiαz

z2 + β2
dz = 2πiResiβ f(z)

= πie−αβ

= πi sgnαe−|αβ|.

Next we show the integral over the semicircle goes to zero as we increase
R to infinity. We have

∣

∣

∣

∣

∫

γ2

zeiαz

z2 + β2
dz

∣

∣

∣

∣

≤
∫

γ2

|zeiαz|
|z2 + β2| |dz|

≤ R

R2 − β2

∫

γ2

|eiαz |dz|

<
πR

α(R2 − β2)
,

which goes to zero, as R goes to infinity. To get from line two to line
three we applied Jordan’s Lemma, see Question 0 of Homework 2.
Taking the limit as R approaches ∞ we get

lim
R→∞

∫ R

−R

xeiαx

x2 + β2
dx = πi sgnαe−|αβ|.
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Taking the imaginary part of both sides we get

lim
R→∞

∫ R

−R

x sinαx

x2 + β2
dx = π sgnαe−|αβ|.

As the integrand
x sinαx

x2 + β2

is even, convergence of the Cauchy principal value implies convergence
of the improper integral to the same limit. Thus

∫ ∞

−∞

x sinαx

x2 + β2
dx = π sgnαe−|αβ|.

Now we consider what happens if we allow β < 0. The LHS doesn’t
change, as (−β)2 = β2. The RHS is also unchanged as |α · −β| = |αβ|.
Finally we consider what happens if we allow α < 0. The LHS changes
sign. The RHS also changes sign, as sgn(−α) = − sgnα and |−α ·β| =
|αβ|. Thus the formula is correct, no matter the sign of α and β.
5. (20pts) Let

f(z) =
za

z2 + z + 1
.

To make sense of za we need to choose a branch of the logarithm. We
cut the complex plane along the non-negative real axis:

V = C \ [0,∞).

We then put

log z = ln |z|+ i arg z where arg z ∈ [0, 2π).

This defines a holomorphic branch of the logarithm on V . Armed with
the logarithm it is then straightforward to define

za = ea log z

and this makes f(z) a holomorphic function on V away from the zeroes
of z2 + z + 1.
We integrate f(z) over the keyhole contour,

γ = γs + γ− + γ+ + γb,

where γs goes clockwise around the circle of radius ρ > 0 centred at
the origin, starting and ending at ρ, γ+ goes from ρ to R just above
the cut, γb goes anticlockwise around the circle of radius R > 0 centred
at the origin, starting and ending at R and γ− goes from R to ρ just
below the cut.
Note that

(z2 + z + 1)(z − 1) = z3 − 1.
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Thus f(z) has isolated singularities at the two cube roots of unity:

ω = e2πi/3 and ω2 = e4πi/3.

If ρ < 1 and R > 1 then we capture both poles. As the poles are simple
we have

Resω f(z) = lim
z→ω

za

z − ω2

=
ωa

ω − ω2

= −i
ωa

√
3

and

Resω2 f(z) = lim
z→ω2

za

z − ω

=
ω2a

ω2 − ω

= i
ω2a

√
3

The residue theorem implies that

∫

γ

f(z) =
za

z2 + z + 1
dz = 2πi (Resω f(z) + Resω2 f(z))

= − 2π√
3
(ω2a − ωa)

=
2π√
3
(e2πia/3 − e4πia/3).

Next we show the integrals over the two circles go to zero as we increase
R to infinity and we decrease ρ to zero. For the big circle the value of
|f(z)| is at most

|f(z)| ≤
∣

∣

∣

∣

za

z2 + z + 1

∣

∣

∣

∣

≤ |za|
|z2 + z + 1|

≤ Ra

R2 −R− 1
.
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Therefore we have
∣

∣

∣

∣

∫

γb

za

z2 + z + 1
dz

∣

∣

∣

∣

≤ LM

≤ 2πRa+1

R2 −R− 1

which goes to zero, as R goes to infinity, as a+ 1 < 2.
For the small circle the value of |f(z)| is at most

|f(z)| ≤
∣

∣

∣

∣

za

z2 + z + 1

∣

∣

∣

∣

≤ |za|
|z2 + z + 1|

≤ ρa

1− ρ− ρ2
.

Therefore we have
∣

∣

∣

∣

∫

γs

za

z2 + z + 1
dz

∣

∣

∣

∣

≤ LM

≤ ρa+1

1− ρ− ρ2
.

which goes to zero, as ρ goes to zero, as a+ 1 > 0.
For the remaining integrals, the branch of the logarithm becomes im-
portant. For the integral above the cut we have

log z = ln x so that za = xa.

For the integrals below the cut we have

log z = ln x+ 2πi so that za = xae2aπi.

For the integral over γ+ we have
∫

γ+

za

z2 + z + 1
dz =

∫ R

ρ

xa

x2 + x+ 1
dx.

By contrast, for the integral over γ− we have
∫

γ
−

za

z2 + z + 1
dz = −e2aπi

∫ R

ρ

xa

x2 + x+ 1
dx.

Let I be the Cauchy principal value of
∫ R

ρ

xa

x2 + x+ 1
dx.

If we let ρ go to zero and R go to infinity then the integral over γ+
approaches I and the integral over γ− approaches −e2aπiI.
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It follows that

(1− e2aπi)I = 2π(e2πia/3 − e4πia/3).

Solving for I gives:

I =
2π√
3

e2πia/3 − e4πia/3

1− e2aπi

=
2π√
3

e−πia/3 − eπia/3

e−aπi − eaπi

=
2π√
3

sin πa/3

sin πa
.

6. (20pts) We first locate the real zeroes. Consider

x4 − x+ 1.

If x < 0 then all three terms are positive so that x4 − x + 1 > 0. If
x ∈ [0, 1) then 1 − x > 0 and x4 ≥ 0 so that x4 − x + 1 > 0. If x ≥ 1
then x4 − x ≥ 0 so that x4 − x + 1 > 0. Thus z4 − z + 1 is always
positive on the real axis.
Consider the change in the argument as we go around the closed contour

γ = γ1 + γ2 + γ3,

where γ1 traverses the interval [0, R], γ2 traverses the quarter circle in
the first quadrant of radius R centred at the origin, starting at R and
ending at iR and γ3 traverses the imaginary axis, starting at iR and
ending at the origin.
There is no chanage in the argument along γ1 as z4 − z + 1 is real and
positive along the real axis. If R is big enough then the dominant term
is z4 and so the change in the argument is

4 · π
2
= 2π.

Now we consider what happens along γ3. If z = iy then

z4 − z + 1 = (y4 + 1)− iy.

If y = R then the dominant term is the real part which is large and
positive. The imaginary part is then negative, but small in comparison
to the real part. So we start in the fourth quadrant.
We now determine how often we cross the real axis. This is when
y = 0. Thus we never cross the real axis. It follows that the change in
the argument over γ3 is close to zero.
In total as go around γ the change in the argument is 2π. Thus z4−z+1
has one zero in the first quadrant. Since the coefficients of z4 − z + 1
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are reals, it must have the same number of zeroes above and below the
real axis.
As there are four zeroes in total, the only possibility is that there is
one zero in each quadrant.
To find the number of solutions in the open disk of radius 3/2 we apply
Rouche’s theorem to the circle of radius 3/2 centred at zero. We try
f(z) = z4 and h(z) = 1− z. On the circle |z| = 3/2 we have

|h(z)| = |1− z|
≤ 1 + |z|

= 1 +
3

2

=
5

2

<
81

16
= |z|4

= |f(z)|.

Thus Rouche’s theorem implies that

f(z) + h(z) = z4 − z + 1

has the same number of zeroes as f(z) = z4 on the open disk |z| < 3/2.
But z4 has a zero of order four at 0 and so all four zeroes of z4 − z + 1
lie in the circle of radius 3/2 centred at 0.
7. (10pts) As the imaginary part of f(z) goes to zero as we approach
the real axis it follows by the refelction principle that f(z) extends to
a holomorphic function on the right half plane

{ z ∈ C | Re(z) > 0 }

and f(z) satisfies the equation

f(z̄) = f(z).

Now consider what happens as we approach the imaginary axis. By
assumption the real part goes to zero. Thus we can extend f(z) to a
holomorphic function on the whole complex plane and

f(z∗) = f(z)∗,

where ∗ represents reflection across the imaginary axis. The reflection
of z = x+ iy is −x+ iy.
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Suppose that f(z) = u+ iv. We compute

f(−z) = f(−x− iy)

= −u(x− iy) + iv(x− iy)

= −u(x+ iy)− iv(x+ iy)

= −f(z).

To get from the first line to the second line we used reflection across
the imaginary axis and to get from the second line to the third line we
used reflection across the real axis.
It follows that f(z) extends to an entire function that is odd.
8. (a) If f : U −→ U is biholomorphic then f has finitely many isolated
singularities on C. Consider the behaviour near an isolated singularity.
Either f has a removable singularity, a pole or an essential singular-
ity. f cannot have an essential singularity, since then by Casorati-
Weierstrass f approaches arbitrarily close to every complex number.
This is not possible as f is a bijection.
Thus f has only poles as singularities. It follows that f is a meromor-
phic function. But then f is a rational function, the quotient of two
polynomials:

f(z) =
p(z)

q(z)
.

Thus f is a Möbius transformation.
(b) We are looking for Möbius transformations that permute the three
points 0, 1 and ∞. Suppose M and N induce the same permutation
of 0, 1 and ∞. If P is the inverse of N then the composition M ◦ P
fixes all three points. But then M ◦ P is the identity. It follows that
M = N .
There are only six ways to permute these three points, so we are looking
for at most six different Möbius transformations.

z −→ z

is the identity and it fixes all three of 0, 1 and ∞.

z −→ 1− z

sends 0 to 1, 1 to 0 and fixes ∞.

z −→ 1

z

sends 0 to ∞, ∞ to 0 and fixes 1.

z −→ z

z − 1
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sends 1 to ∞, ∞ to 1 and 0 to 0.

z −→ z − 1

z
sends 0, ∞, ∞ to 1 and 1 to 0. Finally

z −→ 1

1− z

sends 0 to 1, 1 to ∞ and ∞ to 0.
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