
MODEL ANSWERS TO THE NINTH HOMEWORK

5.1.2. (a) Suppose that we write

x2 =
∞∑
n=1

An sin
nπx

l
.

We just need to compute

Am = 2

∫ 1

0

φ(x) sinmπx dx

= 2

∫ 1

0

x2 sinmπx dx

= 2

[
−x2

mπ
cosmπx+

2x

m2π2
sinmπx+

2

m3π3
cosmπx

]1
0

= − 2

mπ
cosmπ +

4

m3π3
cosmπ − 4

m3π3

=
2

mπ
(−1)m+1 +

4

m3π3
(−1)m − 4

m3π3

It follows that

Am =

{
− 2
mπ

if m is even
2
mπ
− 8

m3π3 if m is odd.

Thus

x2 =
2

π

(
sin πx− 1

2
sin 2πx+

1

3
sin 3πx+ . . .

)
− 8

π3

(
sinπx+

1

27
sin 3πx+

1

125
sin 5πx+ . . .

)
.

(b) Suppose that we write

x2 =
A0

2
+
∞∑
n=1

An cos
nπx

l
.
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We just need to compute

Am = 2

∫ 1

0

φ(x) cosmπx dx

= 2

∫ 1

0

x2 cosmπx dx

= 2

[
x2

mπ
sinmπx+

2x

m2π2
cosmπx− 2

m3π3
sinmπx

]1
0

=
4

m2π2
cosmπ

=
4

m2π2
(−1)m.

On the other hand

A0 = 2

∫ 1

0

φ(x) dx

= 2

∫ 1

0

x2 dx

= 2

[
x3

3

]1
0

=
2

3
.

Thus

x2 =
1

3
+

4

π2

(
− sin πx+

1

4
sin 2πx− 1

9
sin 3πx+ . . .

)
.

5.1.5. (a) We start with

x =
2l

π

(
sin

πx

l
− 1

2
sin

2πx

l
+

1

3
sin

3πx

l
+ . . .

)
.

If we integrate both sides and assume that we can switch the order of
integration and summation we get

x2

2
= c− 2l2

π2

(
cos

πx

l
− 1

4
cos

2πx

l
+

1

9
cos

3πx

l
+ . . .

)
,

where c is a constant to be determined.
If we integrate both sides over the interval (0, l) then every term but
the first is zero. Thus

l3

6
= cl,
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so that

c =
l2

6

and so

x2

2
=
l2

6
− 2l2

π2

(
cos

πx

l
− 1

4
cos

2πx

l
+

1

9
cos

3πx

l
+ . . .

)
,

It is reassuring that this answer is consistent with the answer in 1(b).
(b) If we set x = 0 the LHS is zero. Thus

0 =
l2

6
− 2l2

π2

(
1− 1

4
+

1

9
− 1

25
+ . . .

)
.

It follows that
∞∑
n=1

(−1)n

n2
=
π2

12
.

5.1.8. Following the hint, we first find the equilibrium solution U(x).
By definition the equilibrium solution is independent of time. This the
heat equation reduces to

Uxx = 0 subject to U(0) = 0, U(1) = 1.

The general solution of the PDE is

U(x) = Ax+B.

The boundary conditions imply that

B = 0 and A = 1.

Thus U(x) = x is the equilibrium solution.
Now consider the diffusion equation with initial conditions

u(x, 0) = φ(x)− x.

Thus

u(x, 0) =

{
3x
2

for 0 < x < 2
3

3− 3x for 2
3
< x < 1.

Now the boundary conditions are the Dirichlet conditions u(0, t) =
u(1, t) = 0. Thus we expand u(x, 0) as a Fourier sine series. The
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coefficients are

Am = 2

∫ 1

0

φ(x) sinmπx dx

=

∫ 2/3

0

3x sinmπx dx+ 6

∫ 1

2/3

(1− x) sinmπx dx

=

[
3x

mπ
cosmπx+

3

m2π2
sinmπx

]2/3
0

+ 6

[
1− x
mπ

cosmπx− 1

m2π2
sinmπx

]1
2/3

=
2

mπ
cos

2mπ

3
+

3

m2π2
sin

2mπ

3
− 2

mπ
cos

2mπ

3
+

6

m2π2
sin

2mπ

3

=
9

m2π2
sin

2mπ

3
.

It follows that

Am =


0 if m is divisible by 3
√
3
2

9
m2π2 if m is congruent to 1 modulo 3

−
√
3
2

9
m2π2 if m is congruent to 2 modulo 3.

Thus

u(x, 0) =
9
√

3

2π2
(sinπx− sin 2πx+ sin 4πx− sin 5πx+ . . . ) .

Putting all of this together we get

u(x, t) = x+
9
√

3

2π2

(
e−π

2t sinπx− e−4π2t sin 2πx+ e−16π
2t sin 4πx− e−25π2t sin 5πx+ . . .

)
.

5.1.9. Since we have Neumann boundary conditions, we want to take
the Fourier cosine series for the initial conditions. φ = 0 and ψ(x) =
cos2 x. Now

cos2 x =
1

2
+

1

2
cos 2x,

and so this is the Fourier cosine series for ψ(x). It follows that

B0 = 1 B2 =
1

2
and otherwise Bm = 0.

On the other hand, Am = 0 as φ = 0. Thus

u(x, t) =
t

2
+

1

4c
sin 2ct cos 2x,

is the solution to the wave equation, with ux(0, t) = ux(π, t) = 0,
u(x, 0) = 0 and ut(x, 0) = cos2 x.
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5.2.4. (a) Let

φ(x) =
A0

2
+
∑
n

An cos
nπx

l
+Bn sin

nπx

l

be the Fourier series of φ. If φ is an odd function then

φ(x) cos
mπx

l

is also odd. It follows that

Am =
1

l

∫ l

−l
φ(x) cos

mπx

l
dx

= 0.

Similarly A0 = 0. Thus the Fourier series for φ only has sine terms.
(b) If φ is an even function then

φ(x) sin
mπx

l

is an odd function. It follows that

Bm =
1

l

∫ l

−l
φ(x) sin

mπx

l
dx

= 0.

Thus the Fourier series for φ only has cosine terms.
5.2.6. Let φ be a function on (0, l). Let φeven be the even extension of
φ to (−l, l) so that

φeven(x) =

{
φ(x) if x > 0

φ(−x) if x < 0.

Then the Fourier series for φeven only contains cosine terms, so that we
have

φeven =
A0

2
+
∑

An cos
nπx

l
.

If we restrict to (0, l) then the LHS becomes φ and we get the Fourier
cosine series for φ.
5.2.8. (a) Let φ be a differentiable function. If φ(x) is even then

φ′(x) = lim
h→0

φ(x+ h)− φ(x)

h
.
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It follows that

φ′(−x) = lim
h→0

φ(−x+ h)− φ(−x)

h

= lim
h→0

φ(x− h)− φ(x)

h

= lim
g→0

φ(x+ g)− φ(x)

−g

= − lim
g→0

φ(x+ g)− φ(x)

g

= −φ′(x).

Thus φ′(x) is odd.
On the other hand if φ is odd then it follows that

φ′(−x) = lim
h→0

φ(−x+ h)− φ(−x)

h

= lim
h→0

−φ(x− h) + φ(x)

h

= lim
g→0

−φ(x+ g) + φ(x)

−g

= lim
g→0

φ(x+ g)− φ(x)

g

= φ′(x).

Thus φ′(x) is even.
(b) Suppose that φ is integrable and let

Φ(x) =

∫ x

0

φ(s) ds.

If φ is even then

Φ(−x) =

∫ −x
0

φ(s) ds

= −
∫ x

0

φ(−t) dt

= −
∫ x

0

φ(t) dt

= −Φ(x),

where to get from the first line to the second line we made the change
of variables. Thus Φ is odd.
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If φ is odd then

Φ(−x) =

∫ −x
0

φ(s) ds

= −
∫ x

0

φ(−t) dt

=

∫ x

0

φ(t) dt

= Φ(x),

where to get from the first line to the second line we made the change
of variables. Thus Φ is even.
5.2.9. The odd coefficients are all zero.
If

φ(x) =
∑
n

an sinnx

then φ(x) is odd. Thus its Fourier series over (−π/2, π/2) is equal to
its Fourier sine series over (0, π/2).
Thus

φ(x) =
∑
n

bn sin 2nx.

It follows that ∑
n

an sinnx =
∑
n

bn sin 2nx.

If we integrate against sinmx, where m is odd, the RHS is zero and so
am = 0 if m is odd.

Challenge Problems: (Just for fun)

5.2.15.
| sinx|

is an even function. Thus the Fourier series only invovles cosine terms.

7


