
MODEL ANSWERS TO THE EIGHTH HOMEWORK

4.2.2. (a) We want to solve

X ′′ = −λX,
subject to X ′(0) = X(l) = 0. Suppose that λ = β2 > 0.
The general solution of the ODE is

X(x) = C cos βx+D sin βx.

The boundary conditions imply

0 = X ′(0) = Dβ

and

0 = X(l) = C cos βl +D sin βl.

The first equation implies that D = 0 and so the second equation
implies that

cos βl = 0.

But then

βl = (n+
1

2
)π.

It follows that

β = (n+
1

2
)
π

l
so that λ = (n+

1

2
)2
π2

l2
.

The corresponding eigenfunction is then

cos(n+
1

2
)
πx

l
.

It is easy to see that λ cannot be zero. One can also easily rule out
λ < 0.
(b) The equation for T is

T ′′ = −λT,
This has general solution

An cos(n+
1

2
)
πt

l
+Bn sin(n+

1

2
)
πt

l
.

Therefore we have

u(x, t) =
∑
n

(An cos(n+
1

2
)
πt

l
+Bn sin(n+

1

2
)
πt

l
) cos(n+

1

2
)
πx

l
.

1



If we plug in t = 0 we get

φ(x) =
∑
n

An cos(n+
1

2
)
πx

l
and ψ(x) =

∑
n

Bn(n+
1

2
)
π

l
cos(n+

1

2
)
πx

l
.

4.2.4. We want to solve
X ′′ = −λX,

subject to X(−l) = X(l) and X ′(−l) = X ′(l). Suppose first that
λ = β2 > 0.
The general solution of the ODE is

X(x) = A cos βx+B sin βx.

The boundary conditions imply that

A cos βl −B sin βl = A cos βl +B sin βl,

and
−Aβ sin βl +Bβ cos βl = Aβ sin βl +Bβ cos βl.

These equations reduce to

B sin βl = 0 and A sin βl = 0.

As not both A and B are zero we must have

sin βl = 0.

But then
β =

nπ

l
and

λ =
(nπ
l

)2
.

Now suppose that λ = 0. The general solution of the ODE is

X(x) = Ax+B.

The boundary conditions imply that

−lA+B = lA+B and A = A.

Thus A = 0. It follows that X(x) = 1 is an eigenfunction with eigen-
value 0.
If λ < 0 then the general solution of the ODE is

X(x) = A cosh βx+B sinh βx.

As cosh and sinh are not periodic, the boundary conditions imply that
A = B = 0. Thus the eigenvalues are given by

λ =
(nπ
l

)2
n = 0, 1, 2, . . . .
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(b) Given n, the solution of the ODE

T ′ = −λT

is

Tn(t) = e−n
2π2kt/l2 .

Thus the general solution of the diffusion equation with periodic bound-
ary conditions is

u(x, t) =
A0

2
+
∞∑
n=1

(
An cos

nπx

l
+Bn sin

nπx

l

)
e−n

2π2kt/l2 .

4.3.1. We want to solve the ODE

X ′′ = −λX,

subject to X(0) = 0 and X ′(l) + aX(l) = 0 (a 6= 0). Assume that
λ > 0. The general solution of the ODE is

X(x) = A cos βx+B sin βx,

where λ = β2 > 0. The condition X(0) = 0 implies that A = 0. The
condition that X ′(l) + aX(l) = 0 implies that

Bβ cos βl +Ba sin βl = 0.

This reduces to

tan βl = −β
a
.

The RHS represents a line through the origin. This meets the graph of
tan βl, where β > 0, at infinitely many points. Suppose the solutions
are β1, β2, . . . .
There are two cases. If a < 0 then the slope is positive and there is
one solution β1 between π and 3π/2, one solution β2 between 2π and
5π/2 and so on,

lim
m→∞

(m+ 1/2)π − βm = 0.

If a > 0 then the slope is negative and there is one solution β1 between
π/2 and π, one solution β2 between 3π/2 and 2π and so on,

lim
m→∞

βm − (m− 1/2)π = 0.

Now suppose that λ = 0. Then X(x) = Ax+B. The condition X(0) =
0 implies that B = 0 and then the condition that X ′(l) + aX(l) = 0
implies that A = 0. There are no eigenfunctions with eigenvalue zero.
Finally suppose that λ < 0. The general solution of the ODE is

X(x) = A cosh βx+B sinh βx,
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where −λ = β2 > 0. The condition that X(0) = 0 implies that A = 0.
The condition that X ′(l) + aX(l) = 0 implies that

Bβ cosh βl +Ba sinh βl = 0.

But then

tanh βl = −β
a
.

There are two cases. If a < 0 there is one solution. If a > 0 there are
no solutions.
Thus there is only one negative eigenvalue and only if a < 0.
4.3.2. (a) Suppose that λ = 0. The general solution of the ODE

X ′′ = 0

is X(x) = Cx+D. The boundary conditions imply that

C − a0D = 0 and C + al(Cl +D) = 0.

From the first equation we get C = a0D. The equation then reduces
to

a0D + al(a0Dl +D) = 0.

Cancelling D we get

a0 + al + a0all = 0.

Conversely if X(x) = a0x + 1 and a0 + al = −a0all then X(x) is an
eigenfunction with eigenvalue 0.
(b) The eigenfunctions are X(x) = a0x+ 1.
4.3.11. (a) We have

c−2

2

d

dt

∫ l

0

u2t dx = c−2
∫ l

0

ututt dx

=

∫ l

0

utuxx dx

=

[
utux

]l
0

−
∫ l

0

uxtux dx

= −1

2

d

dt

∫ l

0

u2x dx.

To get from the third line to the fourth line we use the fact that ut = 0
at the boundary points, as u = 0 on the boundary. Thus the derivative
of E with respect to t is zero, so that E is constant in time.
(b) The same calculation is still valid. To get from the third line to the
fourth line we use the fact that ux = 0 at the boundary points.
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(c) Now we have[
utux

]l
0

= ut(l, t)ux(l, t)− ut(0, t)ux(0, t)

= −alut(l, t)u(l, t)− a0ut(0, t)u(0, t)

= −1

2
al(u

2(l, t))t −
1

2
a0ut(0, t)(u

2(0, t))t.

Thus the derivative of ER with respect to time is zero, so that ER is
constant.

Challenge Problems: (Just for fun)

4.3.12. (a) The general solution

vxx = 0

is v(x) = ax+ b. The boundary conditions imply that

a = a =
al + b− b

l
.

Thus v(x) = 1 and v(x) = x are two eigenfunctions with eigenvalue 0.
(b) If λ = β2 > 0 then the general solution

vxx = −λv
is v(x) = a cos βx+ b sin βx. The boundary conditions imply that

bβ = −aβ sin βl + bβ cos βl =
a cos βl + b sin βl − a

l
.

If we use the first equation to solve for a we get

a = b
(cos βl − 1)

sin βl
.

If we use the second equation to solve for a we get

a = b
lβ − sin βl

cos βl − 1
.

Since not both a and b are zero, comparing we get

(cos βl − 1)

sin βl
=
lβ − sin βl

cos βl − 1

so that
(cos βl − 1)2 = sin βl(lβ − sin βl).

(c) If we put

γ =
1

2
lβ.
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then the equation above reduces to

(cos 2γ − 1)2 = sin 2γ(2γ − sin 2γ).

Using the double angle formulae this gives

4 sin4 γ = 2 sin γ cos γ(2γ − 2 sin γ cos γ).

Cancelling gives

sin4 γ = sin γ cos γ(γ − sin γ cos γ).

Expanding we get

sin4 γ = γ cos γ sin γ − sin2 γ cos2 γ.

Thus
sin2 γ = γ cos γ sin γ.

(d) One possibility is that sin γ = 0, so that

γ = nπ,

is a multiple of π. Otherwise

sin γ = γ cos γ.

As not both sine and cosine can be zero, we have

tan γ = γ.

Looking at the graph of tan γ versus the graph of γ, we see that there
are infinitely many positive solutions γ1, γ2, . . . of the equation. We
have

π ≤ γ1
3π

2
2π ≤ γ2

5π

2
, . . .

and the limit

lim
n→∞

2n+ 1

π
/2− γn = 0.

(e) If γ = nπ then the eigenfunctions are

cos
2nπx

l
.

Otherwise the eigenfunctions are

(cos
2γn
l
− 1) cos

2γnx

l
+ sin

2γn
l

sin
2γnx

l
.

Finally, if λ = 0 then we have

1 and x.

(f) The general solution is

u(x, t) = Ax+B+
∑
n

Ane
−4n2π2kt/l2 cos

2nπx

l
+Bne

−4γ2nkt/l2
(

(cos
2γn
l
− 1) cos

2γnx

l
+ sin

2γn
l

sin
2γnx

l

)
.
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If we set t = 0 this reduces to

φ(x) =
∑
n

An cos
2nπx

l
+Bn

(
(cos

2γn
l
− 1) cos

2γnx

l
+ sin

2γn
l

sin
2γnx

l

)
,

and this determines the coefficients, A1, A2, . . . and B1, B2, . . . .
The limit as t→∞ is Ax+B.
4.3.13. (a) The only issue is to determine the boundary condition at
x = l. We assume that the mass is sufficiently small in comparison
to the tension, so that we can ignore the effect of gravity. Newton’s
second law implies that

T
ux√

1 + u2x
= mutt(l, t),

where T is the tension. The denominator of the fraction on the LHS is
approximately one, so that this reduces to

utt(l, t) = kux(l, t)

where

k =
T

m
.

(b) Suppose we have a separated solution

u(x, t) = X(x)T (t).

As usual the wave equation reduces to

X ′′ = −λX and T ′′ = −λT.
The boundary conditions become X(0) = 0 and

T ′′(t)X(l) = T (t)X ′(l).

Using the fact that T ′′(t) = −λT (t) this reduces to

X ′(l) = −λX(l).

(c) We have
X(x) = C cos βx+D sin βx,

where λ = β2 > 0. The first boundary condition implies that

C = 0.

In this case we may assume that D = 1. The second boundary condi-
tion then reduces to

β cos βl = −β2 sin βl.

As not both sin and cosine can be zero this reduces to

tan βl = − 1

β
.
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It is is not hard to see there are infinitely many solutions β1, β2, . . . .
The corresponding eigenfunctions are then

sin βnx.
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