
MODEL ANSWERS TO THE SEVENTH HOMEWORK

3.3.1. Let fodd and φodd be the odd extensions of f and φ to the whole
real line. Let v be the solution to the inhomogeneous diffusion equation
on the whole line with source fodd and initial condition φodd,

vt − kvxx = fodd(x, t) for −∞ < x <∞, 0 < t <∞,

where

v(x, 0) = φodd(x).

Then

v(x, t) =

∫ ∞
−∞

S(x−y, t)φodd(y) dy+

∫ t

0

∫ ∞
−∞

S(x−y, t−s)fodd(y, s) dy ds

Let u be the restriction of v to the half line 0 < x <∞.
Consider v(x, t) + v(−x, t). This is a solution to the homogeneous
diffusion equation with zero initial conditions. Uniqueness implies that
v(x, t) + v(−x, t) = 0. It follows that v(x, t) is odd and so u(0, t) = 0.
u is a solution to the inhomogeneous diffusion equation with source f
and initial condition φ(x).
We have

u(x, t) =

∫ ∞
−∞

S(x− y, t)φodd(y) dy +

∫ t

0

∫ ∞
−∞

S(x− y, t− s)fodd(y, s) dy ds

=

∫ ∞
0

S(x− y, t)φ(y) dy +

∫ 0

−∞
S(x− y, t)− φ(−y) dy +

∫ t

0

∫ ∞
−∞

S(x− y, t− s)fodd(y, s) dy ds

=

∫ ∞
0

(S(x− y, t)− S(x+ y, t)φ(y) dy +

∫ t

0

∫ ∞
0

(S(x− y, t− s)− S(x+ y, t− s))f(y, s) dy ds.

3.3.3. Let W (x, t) = w(x, t)− xh(t). Then

Wx = wx − h(t) and Wt = wx − xh′(t).

Thus

Wt − kWxx = −xh′(t).
We also have

Wx(0, t) = 0 and W (x, 0) = φ(x).

Thus W satisfies the inhomogeneous diffusion equation on the half line
with source −xh′(t) and initial condition φ(x).
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By 3.3.1 we have

W (x, t) =

∫ ∞
0

(S(x−y, t)−S(x+y, t)φ(y) dy+

∫ t

0

∫ ∞
0

(S(x−y, t−s)−S(x+y, t−s))xh′(t) dy ds.

It follows that

w(x, t) =

∫ ∞
0

(S(x−y, t)−S(x+y, t)φ(y) dy+

∫ t

0

∫ ∞
0

(S(x−y, t−s)−S(x+y, t−s))xh′(t) dy ds+xh(t).

3.4.1. We simply apply the formula. We have

φ(x) = ψ(x) = 0 and f(x, t) = xt

so that

u(x, t) =
1

2c

∫∫
∆

f

=
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
ys dy ds

=
1

4c

∫ t

0

[
y2s

]x+c(t−s)

x−c(t−s)
ds

=
1

4c

∫ t

0

s
(
(x+ c(t− s))2 − (x− c(t− s))2

)
ds

= x

∫ t

0

st− s2 ds

= x

(
t3

2
− t3

3

)
=
xt3

6
.

3.4.3. Again, we simply apply the formula.
There are three parts. The part corresponding to φ is

1

2
φ(x+ ct) +

1

2
φ(x− ct) =

1

2
sin(x+ ct) +

1

2
sin(x− ct).

The part corresponding to ψ is

1

2c

∫ x+ct

x−ct
ψ =

1

2c

∫ x+ct

x−ct
(1 + s) ds

=
1

2c

[
s+

s2

2

]x+ct

x−ct

= t+
1

4c

(
(x+ ct)2 − (x− ct)2

)
= t+ xt.
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Finally there is the part corresponding to f

1

2c

∫∫
∆

f =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
cos y dy ds

=
1

2c

∫ t

0

[
sin y

]x+c(t−s)

x−c(t−s)
ds

=
1

2c

∫ t

0

sin(x+ c(t− s))− sin(x− c(t− s)) ds

=
1

2c2

[
cos(x+ c(t− s)) + cos(x− c(t− s))

]t
0

=
1

c2
cosx− 1

2c2
(cos(x+ ct) + cos(x− ct)) .

Putting all of this together gives

u(x, t) =
1

2
sin(x+ct)+

1

2
sin(x−ct)+t+xt+ 1

c2
cosx− 1

2c2
(cos(x+ ct) + cos(x− ct)) .

4.1.2. We have the PDE
ut = kuxx

where u(x, 0) = 1 and u(0, t) = u(l, t) = 0.
The general solution is

un(x, t) =
∑
n

Ane
−n

2π2

l2
kt sin

nπx

l
.

This satisfies the initial condition

un(x, 0) =
∑
n

An sin
nπx

l
.

If we compare this with the series expansion

1 =
4

π

(
sin

πx

l
+

1

3
sin

3πx

l
+

1

5
sin

5πx

l
+ . . .

)
,

we see that we want to choose

An =

{
4
π

1
2n+1

if n is odd

0 if n is even.

Thus

u(x, t) =
4

π

(
e−

π2

l2
kt sin

πx

l
+

1

3
e−9π

2

l2
kt sin

3πx

l
+

1

5
e−25π

2

l2
kt sin

5πx

l
+ . . .

)
is the heat distribution in the metal rod.
4.1.3. Let

u(x, t) = X(x)T (t)
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be a separated solution. Then

T ′(t)X(x) = iT (t)X ′′(x).

It follows that
T ′

iT
=
X ′′

X
= −λ

is constant. We have already seen that this implies that

Xn(x) = sin
nπx

l
for some n, where

λn =
(nπ
l

)2

.

The equation for T is then

T ′ + iλnT = 0.

This gives
T (t) = Ane

−iλnt.

Thus
u(x, t) =

∑
n

Ane
−n2π2it/l2 sin

nπx

l
.

4.1.4. As usual, we look for separated solutions. The PDE becomes

T ′′ + rT ′

c2T
=
X ′′

X
= −λ.

As usual we get

Xn(x) = sin
nπx

l
where λn =

(nπx
l

)2

.

Thus
T ′′ + rT ′ + λnc

2T = 0.

Consider the quadratic equation

z2 + rz + λnc
2 = 0.

The roots are given by the quadratic formula. They are

z =
−r ±

√
r2 − λnc2

2

=
−r ± i

√
λnc2 − r2

2

= −r
2
± bni.

It follows that

Tn(t) = e−rt/2(An cos bnt+Bn sin bnt).
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Thus we get

u(x, t) = e−rt/2
∑
n

(An cos bnt+Bn sin bnt) sin
nπx

l
.

Challenge Problems: (Just for fun)

3.4.6. (a) Recall that we have a factorisation

utt − c2uxx =

(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u

= f(x, t).

If we let

v = ut + cux then vt − cvx = f.

(b) If we introduce the change of coordinates

ξ = cx+ t and η = x− ct

then the first equation reduces to

uξ = v.

If we integrate with respect to ξ then we get

u(ξ, η) =

∫ ξ

v.

Now consider changing back to x, t-coordinates. The integral is over
the curves where η is constant. These are parametrised as

(x− ct+ cs, s).

Therefore we get

u(x, t) =

∫ t

0

v(x− ct+ cs, s) ds.

(c) If we introduce the change of coordinates

ξ = cx+ t and η = x− ct

then the first equation reduces to

vη = f.

If we integrate with respect to ξ then we get

v(ξ, η) =

∫ η

f.
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Now consider changing back to x, t-coordinates. The integral is over
the curves where ξ is constant. These are parametrised as

(x+ ct− cr, r).

Therefore we get

v(x, t) =

∫ t

0

f(x+ ct− cr, r) dr.

(d) We have

u(x, t) =

∫ t

0

v(x− ct+ cs, s) ds

=

∫ t

0

∫ s

0

f(x− ct+ 2cs− cr, r) dr ds

=

∫ t

0

∫ t

r

f(x− ct+ 2cs− cr, r) ds dr.

To get from the first line to the second line we used (c) to substitute for
v and to get from the second line to the third line we changed the order
of integration. Now consider the change of variable y = x−ct+2cs−cr.
We get

dy = 2c ds.

Thus we get

u(x, t) =
1

2c

∫ t

0

∫ x+ct−cr

x−ct+cr
f(y, r) dy dr.

3.4.12. We integrate over the reflection ∆ of the domain of dependence.
There are two cases. If x0 + ct0 ≥ 0 then the domain of dependence
has the standard triangular shape and we will get the same answer as
before.
If x0 + ct0 < 0 then the reflection of the domain of dependence is a
triangle with a triangle removed (another domain of dependence with
vertex along the t-axis). This domain of has four sides, call them M0,
M1, M2 and M3. Compared with the labelling on page 76, M0 is a part
of L0, M1 = L1, M2 is a part of L2 and M3 starts on the t-axis and
goes down to the x-axis, parallel to M1.
Note that the line x− x0 = c(t− t0) meets the t-axis where

t = t0 −
x0

c
.

On the other hand the endpoint of M3 on the x-axis is the reflection
of (x0 − ct0, 0) which is (ct0 − x0, 0).
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We have ∫∫
∆

f dx dt =

∫∫
∆

(vtt − c2vxx) dx dt.

Green’s Theorem states that∫∫
∆

(Px −Qy) dx dt =

∫∫
∂∆

P dt+Q dx,

for any functions P and Q. Thus∫∫
∆

f dx dt =

∫∫
M0+M1+M2+M3

−c2vx dt− vt dx.

For the integral over M0 we have dt = 0 and so∫
M0

= −
∫ x0+ct0

ct0−x0
ψ(x) dx.

Note the lower limit is now ct0 − x0. The integral over M1 = L1 is the
same as before, ∫

M1

= cv(x0, t0)− cφ(x0 + ct0).

On M2 we have x− ct = x0 − ct0 so that dx− cdt = 0. But then

−c2vx dt− vt dx = −cvx dx− cvt dt = −c dv.

It follows that ∫
M2

= cv(x0, t0)− ch(t0 −
x0

c
).

For the integral over M3, we have x+ct = ct0−x0, so that dx+cdt = 0.
But then

−c2vx dt− vt dx = cvx dx+ cvt dt = c dv.

Thus ∫
M3

= c

∫
M3

dv = −ch(t0 −
x0

c
) + cvφ(ct0 − x0).

Adding these results gives∫∫
∆

f dx dt = 2cv(x0, t0)−2ch(t0−
x0

c
)−c (φ(x0 + ct0)− φ(ct0 − x0))−

∫ x0+ct0

ct0−x0
ψ(x) dx.

Thus

v(x0, t0) = h(t0−
x0

c
)+

1

2
(φ(x0 + ct0)− φ(ct0 − x0))+

1

2c

∫ x0+ct0

ct0−x0
ψ(x) dx+

1

2c

∫∫
∆

f dx dt.

4.1.6. If we look for separated solutions

u(x, t) = X(x)T (t)
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then we get
tXT ′ = X ′′T + 2XT.

This gives
tT ′

T
− 2 =

X ′′

X
= −λ.

Suppose that −λ = β2 > 0. For X we get

X(x) = C cos βx+D sin βx.

As usual, imposing the boundary condition reduces this to

X(x) = sinnx.

This gives the ODE
tT ′ =

(
2− n2

)
T.

The general solution of this ODE is

T = At2−n
2

,

where A is a constant. Thus the separated solutions are

un(x, t) = At2−n
2

sinnx.

If we take n = 1 then we get

u1(x, t) = At sinx.

This all satisfy the initial condition u(x, 0) = 0 and so there are infin-
itely many solutions, one for each value of A.
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