MODEL ANSWERS TO THE SEVENTH HOMEWORK

3.3.1. Let foqqa and ¢oqq be the odd extensions of f and ¢ to the whole
real line. Let v be the solution to the inhomogeneous diffusion equation
on the whole line with source f,qq and initial condition ¢yqq,

— kvge = foaa(z,t) for —oco<r<oo, 0<t<oo,

where
o(2,0) = doal2)-
Then

o(a,t) = / " S(e—y, O)boaaly) dy+ / / (e —yst—5) foaaly, 5) dy ds

Let u be the restriction of v to the half line 0 < z < oco.

Consider v(z,t) + v(—z,t). This is a solution to the homogeneous
diffusion equation with zero initial conditions. Uniqueness implies that
v(x,t) +v(—x,t) = 0. It follows that v(z,t) is odd and so u(0,t) = 0.
u is a solution to the inhomogeneous diffusion equation with source f
and initial condition ¢(z).

We have

u(z,t) / S(z — y,t)Poaa(y dy+// (x —y,t = 5) foaa(y, s) dy ds

/S:c—y, dy—l—/ Sz —y,t) — dy+// S(x —y,t = 5)foaa(y, s)

:/0 (S(r —y,t) — S(l’+y,t)¢(y)dy+/o/0 (S(x—y,t —s) = S(x+yt—3)f(y,s)

3.3.3. Let W(z,t) = w(z,t) — xzh(t). Then
W, = w, — h(t) and W, = w, — zh/(t).
Thus
W, — kW, = —al!(t).
We also have
W,(0,t) =0 and  W(z,0) = ¢(z).

Thus W satisfies the inhomogeneous diffusion equation on the half line
with source —zh/(t) and initial condition ¢(z).
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By 3.3.1 we have

W(x,t) :/0 (S(x—y,t)=S(x+y,t)o(y) dy+/0 /0 (S(x—y,t—s)—S(x+y,t—s))zh'(t) dy ds.
It follows that

) t o0
wat) = [ (S-pt)=Slaty 00w dr+ | [ (Sla-y.t=5)=S(oty,t-s)ah(®) dydsta
0 0 Jo
3.4.1. We simply apply the formula. We have
¢p(r) =¢(x)=0 and  f(z,t) =at
so that

1
z+c(t—s)
// ysdyds
x—c(t—s)

z+c(t—s)
2
d
40 0 {y S} ’

z—c(t—s)
t

-5/ (x+c(t—s)? = (z —ct —5))?) ds

t
:I/St—82d8
0
IR
=X _— —
(5-5)

at3
5
3.4.3. Again, we simply apply the formula.
There are three parts. The part corresponding to ¢ is

1 1 1 1
§¢(x +ct) + §¢(x —ct) = 3 sin(x + ct) + 3 sin(x — ct).

The part corresponding to 1 is
1 x+ct x+ct

1
— @Z)—Qc/r (1+s)ds

26 r—ct —ct

1 82 x+ct
~ 2 [‘H 2]

z—ct

1
=t+ i ((z+ct)” = (z — ct)?)
=1+ xt.



Finally there is the part corresponding to f

1 z+c(t—s)
—//f // cosydyds
2c A
x-l—ct s)
= — / [smy} ds
c(t—s)

sm(m +c(t —s)) —sin(x — ¢(t — s))ds

" 2
1 t
=3 2[cos(x—i—c(t—s))—i—cos(:z:—c(t—s))
0
- 5 (cos(e + ct) + cos(a — ct)).
= 5 Cos& — 5 (cos(z + ct) + cos(z — ¢

Putting all of this together gives

1 1 1 1
u(z,t) = 5 51n(x+ct)+2 sin(z— ct)+t+xt—i—— COST— 5 (cos(z + ct) 4 cos(z — ct)) .

4.1.2. We have the PDE
where u(x,0) = 1 and w(0,t) = u(l,t) =

The general solution is
_n2x2 . nhmx
= g A # Mgin —=
l
n

This satisfies the initial condition
nmwx
un(z,0) ZA sin ——

If we compare this with the series expansion
1 4 .7rx+1.37rx+1_57m'+
=—(sin— + —-sin— + —sin— + ...
— | sin— 3 in— 5 in— ,

we see that we want to choose

A {%%1“ if n is odd

0 if n is even.

Thus

4 22 1 gx2 3rx 1 2 5
u(z,t) = - (e_ﬂkt sin ? + 56_9 2z gin % + = E e M gin $ +.. )
is the heat distribution in the metal rod.
4.1.3. Let
u(z,t) = X(x)T(t)
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be a separated solution. Then
T'(t)X(x) =iT(t) X" (x).

It follows that
T/ X//

— = —A
X
is constant. We have already seen that this implies that
X, (x) = sin #
for some n, where
\ <n7r>2
n l N
The equation for T is then
T + i\, T = 0.
This gives
T(t) = A,e™ ™,
Thus

nmwxr

U;(l’, t) = Z Ane—n27r2it/12 sin T

4.1.4. As usual, we look for separated solutions. The PDE becomes

Tl/ + TTI X/l
— = — ==\
AT X
As usual we get
2
X, (x) = sin ”lﬂ where A = (#) :

Thus
T" + 7T + M\®T = 0.
Consider the quadratic equation
2 4rz+ N2 =0.

The roots are given by the quadratic formula. They are

PNy w:

z =

2
rxiyNE 2
- 2
= i

2
It follows that

T.(t) = e_rt/Q(An cos bt + B, sinb,t).
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Thus we get

) = 2N 7(A, cosb,t + B, sin b, t) sin .
u(z,t) =e Z( cos bt + B, sin )sml

n

Challenge Problems: (Just for fun)

3.4.6. (a) Recall that we have a factorisation

Uy — Uy = 2—02 2+c2 U
* woA\ot  ox)\ot ' ox

= f(x,t).
If we let
V= U + cu, then v — vy = f.
(b) If we introduce the change of coordinates
E=cr+1t and n=ux—ct
then the first equation reduces to
Ug = 0.

If we integrate with respect to & then we get

wem = [ v

Now consider changing back to z, t-coordinates. The integral is over
the curves where 7 is constant. These are parametrised as

(x —ct+cs,s).

Therefore we get

t
u(z,t) = / v(x —ct + cs, s) ds.
0

(c) If we introduce the change of coordinates
E=cr+1t and n=ux—ct
then the first equation reduces to
v, = f.

If we integrate with respect to & then we get

v(&,n) = /nf-
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Now consider changing back to z, t-coordinates. The integral is over
the curves where £ is constant. These are parametrised as

(x +ct —er,r).

Therefore we get

v(z,t) = /Otf(x—i-ct—cr,r) dr.

(d) We have

t
u(m,t):/ (x —ct+cs,s)ds

//fx—ct+2cs—crr)drds
://f(x—ct+203—cr,7“)dsdr.
0 Jr

To get from the first line to the second line we used (c) to substitute for
v and to get from the second line to the third line we changed the order
of integration. Now consider the change of variable y = x —ct+2cs—cr.
We get

dy = 2cds.

z+ct—cr
u(z,t) / / r) dydr.
2C x—ct+cr

3.4.12. We integrate over the reflection A of the domain of dependence.
There are two cases. If xg + ¢ty > 0 then the domain of dependence
has the standard triangular shape and we will get the same answer as
before.

If xg + ctg < 0 then the reflection of the domain of dependence is a
triangle with a triangle removed (another domain of dependence with
vertex along the t-axis). This domain of has four sides, call them M,
M, My and M3. Compared with the labelling on page 76, M, is a part
of Ly, Mi = Ly, M5 is a part of Ly and Mj starts on the t-axis and
goes down to the x-axis, parallel to M;.

Note that the line z — xy = ¢(t — tp) meets the t-axis where

Thus we get

t=1ty— —.

On the other hand the endpoint of M3 on the x-axis is the reflection
of (xg — cto,0) which is (cty — xg,0).
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We have

//Af drdt = //A(”tt — Pu,,) da dt.

Green’s Theorem states that

//A(PJC—Qy)dxdt://%PdH—de,

for any functions P and (). Thus

//fdmdt:// —c?v, dt — v, dz.
A Mo+Mi+Ma+Ms

For the integral over M, we have d¢ = 0 and so

xo+cto
/ =— W(z)de.
My C

to—To
Note the lower limit is now ctg — xo. The integral over My = L; is the
same as before,

/ = cv(xo, to) — ch(xo + cto).
M,

On M, we have x — ¢t = xg — cty so that dz — ¢dt = 0. But then
—v, dt — v de = —cv, dx — cvp dt = —cdw.

It follows that
= cv(xg, tg) — ch(to — @).
Mo c
For the integral over M3, we have x+ct = cty—x¢, so that de+cdt = 0.
But then

—cv, dt — v dz = cv, dz + cv, dt = edw.

Thus
= c/ dv = —ch(ty — @) + cvp(cty — xp).
M3 M3 ¢

Adding these results gives

// fdxdt = 2cv(xo, to)—2ch(to—%)—c (oo + cto) — @d(cty — xo))_/xo+cto¢($> o
A cto—xo
Thus
To+cto
olent0) = hlto =)+ (8an + cto) = olcto 205 | ) dotg [[ rasa

4.1.6. If we look for separated solutions

u(z,t) :7X(x)T(t)



then we get
tXT = X"T +2XT.

This gives

Suppose that —\ = 32 > 0. For X we get
X (x) = Ccos Bz + D sin fz.
As usual, imposing the boundary condition reduces this to
X (z) = sinnz.

This gives the ODE

tr" = (2—n)T.
The general solution of this ODE is

T = A",
where A is a constant. Thus the separated solutions are
up(z,t) = At*™ sinna.

If we take n = 1 then we get

ui(x,t) = Atsinz.

This all satisfy the initial condition u(z,0) = 0 and so there are infin-
itely many solutions, one for each value of A.



