MODEL ANSWERS TO THE SIXTH HOMEWORK

3.1.1. We use the general formula

e p— / ek _ =/ oy gy
0

vVAarkt

We complete the square in both integrals, as in lecture 11. Note that
—(z+y)* = —(=(-2) —y)~.
The exponents of the exponentials in the two integrals are

(y + 2kt — x)? (y + 2kt + z)?
1t +kt—=x and 1t + kt + .

To get the second expression just flip the sign of z. We make the change
of variables

y+ 2kt —x d y+2kt+x
= — - an = —,
ikt AR
so that
dy dy
dp = —=— and dg = —.
P 4kt 1 Vakt
Thus
1 > 1 =
u(z,t) = —ekt_x/ e P dp — —=ektte e~ dg
VT (2kt—ax)/v/Akt T (2kt+a) /v 4kt

= %(ekt:p _ ektJr:v) _ ekt—= @@rf((th — x)/\/4kt) + ektte @@rf((%t " x)/\/m)

3.1.3. We want to solve the Neumann boundary problem
Wy = kWgy for O<zr<oo, O0<t<oo
w(z,0) = ¢(x) for t=0
w,(0,t) =0 for x=0.

Let Geven be the unique function which is the same as ¢ for z > 0 (Peven
extends ¢) and which is also even.

) e(z)  ifx>0
Deven(2) = {gb(—x) if z <0.
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Now we solve the auxiliary problem

Up = Klpy for —o<r<oo, 0<t<o
w(x,0) = Poven() for t=0.

We have a formula for

e = [ " 5@ — 1, D berenly) dy.

o0

u is even as @eyen is even. It follows that u, is odd. Let w(x,t) be the
restriction of u(x,t) to the half line 0 < 2 < co. Note that as u, is odd,
w,(0,t) = 0. As derivatives are computed locally, w; is the restriction
of u; and w,, is the restriction of u,,. Thus w automatically satisfies
the diffusion equation. As ¢ is the restriction of @eyen () it is automatic
that w(x,0) = ¢(z).

We have

0

u(z,t) = / S(a— g, 0)6(y) dy + | st —pasa

—00

If we change variable from —y to y in the second integral, we get

ule,t) = / (S —u,t) + Sz +4.6))é() dy

It follows that
1 (0.9]
Virkt / (e (I R 0(y) dy
0

3.2.1. Consider the Neumann boundary problem

w(z,t) =

Uy = Uy for O<r<oo, O<t<oo
v(x,0) = o(x) v(z,0) =(x) for t=0
v(0,) =0 for x =0.

Let oven and Weven be the even extensions of ¢ and 1 to the whole real
line. Let u(x,t) be the solution to the wave equation on the whole real
line and let v be the restriction of u to positive values of x. Then w is
even so that u, is odd and so v,(0,t) = 0.

If we apply d’Alembert’s formula then we get

z+ct

1
’U('r7 t) = 5 (¢even($ + Ct) + d)even(aj - Ct)) + 2_C weven<y) dy'
r—ct
We now turn this into a formula involving ¢ and 1. There are two

possibilities, depending on the sign of x — ¢t. If x > c|t| then both
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x4+ ct and x — ct are positive and so

x+-ct

(@(x + ct) + oz — ct)) + = U(y) dy,

2c

N —

v(z,t) =

x—ct

the usual formula. But now suppose that x < c|t|. Then z — ¢t is
negative so that

¢even(x - Ct) = (b(Ct — SC)
Thus

v(x,t) =

x+ct

(p(x + ct) + od(ct — x))+=—

: wdy+/w ) dy,
CJo

DN | —

If we replace y by —y in the second integral then we get

1 T+ct
o) = S 0l +at)+ ot —a)+o [ ey [T v

valid when = < c|t|.
3.2.3. At time t = 0 we have

u(xz,0) = f(z) and  w(x,0) =cf'(x)

We apply d’Alembert’s formula. There are two cases. If x > ¢t then

x+ct
wat) = 3 (et ct)+ fa =)+ 5 [ efay
_ %(f(vact) b= et)) +%(f(m+ct) T —
= f(x + xt).

But if x < ¢t then we get

x+ct

Fate)=fet=a)+5 [ ey

ct—x

u(zx,t) =

|l = N

Lftet) = flet — o))

= 2(f(m—|—ct)—f(ct—x))+2

= f(z +ct) — f(ct — x).

3.2.5. We apply d’Alembert’s formula. There are two cases. If x > ct
then

u(z,t) == (1+1)

il SR



But if x < ¢t then we get

u(z,t) ==-(1-1)

S|

Thus u(x,t) = H(x — ct). The singularity is at x = ct.

3.2.9. (a) ¢ = 1 so that the characteristic lines are x —t = —4/3 and
x4+t =8/3. So the two relevant intervals are [-2, —1] and [2, 3]. Both
the first and the second represents two reflections. Thus the general
formula is

1 1 ot-2
v(z,t) = §¢(x —t+2)+ §¢(x +t—2)+ 3 /—t+2 P(s)ds.

Asp(z) =2*(1—xz)and x — t + 2 =2+t — 2, we get

v(g, 2) = 2%(1 —2/3)/3

3
= 4/27.

(b) Now the characteristic lines are x —t = —13/4 and z+¢ = 15/4. So
the two relevant intervals are [—4, —3] and [3,4]. The first represents
four reflections and the second represents three reflections. Thus the
general formula is

v(x,t) = %¢(x —t+4)— %¢(4 —x—1)+ —/ o P(s)ds.

Now x —t+4=3/4and 4 —x —t = 1/4 and so we get

L7, 1, 5 1 5 1 3 7513/4
0(1’5) =33 (1—3/4)/4 —51(1_1/4)/4 _5[_(1_@ /3]1/4
132-3 13 -1
2 43 6 43

1
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Challenge Problems: (Just for fun)

3.14. (a) v(z,t) is a solution of the diffusion equation with initial
conditions v(x,0) = f(x).
(b) As the derivative of a solution to the diffusion equation is a solu-

tion to the diffusion equation, we have v, is a solution of the diffusion
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equation. By linearity it follows that w is a solution of the diffusion
equation. The initial conditions are given by

w(z,0) = v.(z,0) — 2v(zx,0)

= ()~ 2/ (a)
_J1=2z forxz>0
| -1-2z forz<0
(c) f(x) —2f'(z) is clearly odd.
(d) As w is a solution of the diffusion equation and f(x) —2f'(x) is an
odd function, it follows that w is odd.
(e) It follows that w(0,¢) = 0. Thus v(x,t) satisfies the diffusion equa-
tion, with initial condition v(z,0) = x and v, (0, t) —2v(0,t) = w(0,t) =
0. It follows that

u(z,t) = !

Varkt

/ e~V 1 () dy.



