MODEL ANSWERS TO THE FIFTH HOMEWORK

2.4.1. Note that Q(z,t) is a solution to the diffusion equation with
Q(z,0) = H(z). This jumps from zero to one at z = 0. ¢(z) jumps
from 0 to 1 at x = —[ and then jumps from 1 to 0 at x = [.

Now

1 foraz > —I

0 forz < —I.

H(:L‘—I—l):{

This is almost correct, we just want to adjust this function so that it
jumps down at x = [.

Hiz—1) = 1 forxz>1
)0 forz <L

Thus

¢(x)=H(x+1)— H(x —1).
Q(x+1,t) is a solution to the diffusion equation with initial conditions
H(x+1and Q(x—I,t) is a solution to the diffusion equation with initial
conditions H(x —1).
It follows that Q(z + [,t) — Q(x — [,t) is a solution to the diffusion
equation with initial condition H(x +1) — H(x — 1) = ¢(x).
Now

1 1 T
Q(x,t):§+§£’rf (\/M)

Thus
Qla+1t) — Qe —1,t) = % <&f (f/%klt) — onf (%)) |

2.4.9. g, is a solution to the diffusion equation, as any derivative
of a solution is a solution. As u(z,0) = 22, we have u,(z,0) = 2z,
Uzz(2,0) = 2 and Uz (x,0) = 0. By uniqueness, it follows that
Uzze (2, 1) = 0. If we integrate thrice we get

u(x,t) = A(t)z® + B(t)x + C(t).
In this case
uy = A'(t)x?® + B'(t)x + C'(t) and Uy, = 2A(1).
As u is a solution of the diffusion equation we get
A'(t)z? + B'(t)x + C'(t) = 2kA(t).
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It follows that A'(t) = B'(t) = 0 and C'(t) = 2A(¢). From the first
two equations we deduce that A(t) = a and B(t) = b are constants.
If we plug in t = 0 we see that @ = 1 and b = 0. From the equation
C'(t) = 2k we see that C(t)2 = 2kt + ¢ and from the initial condition
we see that ¢ = 0.

Thus

u(z,t) = 2% + 2kt

is a solution to the diffusion equation such that u(z,0) = z2.
2.4.10. (a) The general formula says that

1 o

If we let
T—y dy
= then dp = ——=—.
P vVakt b 4kt
and

y* = (z — Vaktp)®.

So the integral becomes
1 [ .
u(z,t) = NG /_Ooe_p (x — V4ktp)*dp.

(b) If we expand the square in the integral, we get three terms,

2?2 — 2V 4ktpx + 4ktp®.

Now consider what happens when we integrate. For the first term we
can pull out 22 and the resulting integral

1 ©© 2
— P dp =1.
ﬁ/of b

It follows that the coefficient of 22 is one, as expected. As p is odd and
e is even, pe*p2 is odd and so the integral of the second term is zero.
Hence the coefficient of = is zero. Thus

4kt [ 2
u(r,t) = 2° + — 2e7P dp.
(z,1) = p
Comparing we must have
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2.4.11. (a) Consider v(z,t) = u(x,t) + u(—=x,t). By linearity v is a
solution of the diffusion equation. We have

v(x,0) = u(z,0) + u(—=x,0)

= o(x) + ¢(—=)

=0.
Thus v is a solution to the diffusion equation such that v(z,0) is iden-
tically zero. Another such function is the function which is identically
zero. By uniqueness v is identically zero.
But then

u(z,t) +u(—=z,t) =0,

so that w is odd.
(b) Consider v(z,t) = u(x,t) — u(—=x,t). By linearity v is a solution of
the diffusion equation. We have

v(x,0) = u(z,0) — u(—=x,0)

= ¢(x) — ¢(—x)

= 0.
Thus v is a solution to the diffusion equation such that v(zx,0) is iden-
tically zero. Another such function is the function which is identically
zero. By uniqueness v is identically zero.
But then

u(z,t) —u(—z,t) =0,

so that u is even.
(c) For the wave equation we need that both ¢(x) and ¥ (z) are odd
(respectively even).
Consider v(z,t) = u(x,t) £ u(—z,t). By linearity v is a solution of the
diffusion equation. We have

v(z,0) = u(z,0) £ u(—=x,0)
= ¢(x) £ ¢(—x)
and
vy(x,0) = uy(z,0) £ uy(—2x,0)
= Y(x) £(—x)
= 0.
Thus v is a solution to the diffusion equation such that both v(z,0)

and v;(z,0) are identically zero. Another such function is the function

which is identically zero. By uniqueness v is identically zero.
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But then
u(z,t) £ u(—z,t) =0,

so that u is odd (respectively even).

2.4.12. (a)
1 1 T
r,t) ==+ = &rf )
Q( ) 2 2 <\/4/€t)
(b) We have
» 1, 134 Lo,
EC=14+z+=-2"4+=2"+- -+ —=2"+....
2 6 n!
Thus
2 1 1 1
-y 1 — 2 P S ¢ —1\)— 2n
e gy gyt (1) ™+
It follows that
1 1 1
—y2d . B e s S GO T - 2n+1
/6 U T Ay U St A s re s m L

It follows that

t_llxlx?’l 1\’ 1 2t
Qe =3+ 7w (Vi) () * Y s ()

(c) We have
1 1 =z
r,t)~ -+ =
(d) If z is fixed and ¢ is large then
oz
YT VR

is small and then the Taylor series is a good approximation.
2.4.18. Consider the change of variable y =z — Vi, s =t. We have

0z = 0Oy and 0y = =V, + 0,
It follows that
Up — Kgy + Vg = us — kuy,.
The second equation is the diffusion equation and it has solution
1 o 2
_ —(y—2)%/4ks d
u(y, s) = e z)dz.
=57 ) -

It follows that

1 > 2
u(z, t) = 6—(I—Vt—y) /4kt du.
@)= 5= 8(9) dy
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2.5.1. Suppose that we solve the wave equation on the whole real line

with initial data
2

o(x)=0 and Y(r)=e"".
Then there is no boundary and initially «(z,0) = 0 but u(z,t) > 0
for t > 0 small. So the maximum is an interior point of any suitable
rectangle.
2.5.2. (a) If u= f(xz — at) then
uy = a’f’'(x —at)  and  ug = f’(z — at)
This gives
a®f"(x — at) = A f"(z — at).
If " is not identically zero it follows that a? = ¢? so that a = +c. If
f" is identically zero then f must be linear.
(b) If u = f(x — at) then
w=af (r—at) and  ug = f"(x — at)
This gives
af'(x —at) = kf"(x — at).
Subsituting for y = ax — at this gives
af'(y) =kf"(y).
Integrating we get

kf'(y) =af(y) +0.

This is an inhomogeneous linear ODE for f. f(y) = by/k is a particular
solution. The associated homogeneous is

kf'(y) = af(y)

This has general solution

fly) = e/,
Thus the original equation has general solution
b
fly) = e + %
This shows that a is arbitrary.

Challenge Problems: (Just for fun)

2.4.16. Let
u(z,t) = e (. t).
Then

wy = —be w(z, t) + e Py (z, 1) and Vpw = € gy
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It follows that
vy — kg, =0

and so ) -
u(z,t) = 5 Wkte_bt/ e_(m_y)2/4kt(b(y) dy.
2.4.17. Let ,
u(z,t) = e " Bo(x, ).
Then
Uy = —btze’bt3/3v(x, t) + e v, (z, ) and Vpy = e’bt3/3um.
It follows that
vy — kg, =0
and so . -
U(ZE, t) _ 2—7Tkt€—bt3/3/ e—(:c—y)2/4kt¢(y> dy.
—0oQ



