
MODEL ANSWERS TO THE THIRD HOMEWORK

2.1.1. We apply d’Alembert’s formula. By assumption

φ(x) = ex and ψ(x) = sin x

and so we get

u(x, t) =
1

2
(ex+ct + ex−ct) +

1

2c
(cos(x− ct)− cos(x+ ct)).

After using some standard identities we get

u(x, t) = ex cosh ct+
1

c
sinx sin ct.

2.1.2. We apply d’Alembert’s formula. By assumption

φ(x) = log(1 + x2) and ψ(x) = 4 + x

and so we get

u(x, t) =
1

2
(log(1 + (x+ ct)2) + log(1 + (x− ct)2)) +

1

2c
(1/2(x+ ct)2 + 4(x+ ct)− 1/2(x− ct)2 − 4(x− ct))

=
1

2
log(1 + (x+ ct)2)(1 + (x− ct)2) + 5t.

2.1.3. The wave speed is

c =

√
T

ρ
.

The nearest point where the hammer strikes to the flea is at

l

2
− a.

Therefore the distance of the flea from the nearest point from where
the hammer strikes is

l

4
− a.

The hammer causes a depression as well as imparts velocity to the
string. It follows that there is a wave traveling to the left at speed c.
The disturbance reaches the flea after

l − 4a

4c
=
ρ1/2(l − 4a)

4T 1/2

units of time.
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2.1.5. We apply d’Alembert’s formula. By assumption

φ(x) = 0 and ψ(x) =

{
1 for |x| < a

0 for |x| > a.

Therefore

u(x, t) =
1

2
φ(x+ ct) +

1

2
φ(x− ct) +

1

2c

∫ x+ct

x−ct
ψ

=
1

2c

∫ x+ct

x−ct
ψ

=
1

2c
{length of (x− ct, x+ ct) ∩ (−a, a)},

since the integral is nothing more than the area under the graph of ψ,
and this area is just the length of the part of (−a, a) between x − ct
and x+ ct.
Now suppose that

t = k · a
2c

where k = 1, 2, 3, 4, 5.

We have

x− ct = x− ka
2

and so

u(x, t) =
1

2c
{length of (x− ka

2
, x+ k

a

2
) ∩ (−a, a)}.

2.1.9. We have

uxx − 3uxt − 4utt = ∂2xu− 3∂x∂tu− 4∂2t u

= (∂2x − 3∂x∂t − 4∂2t )u

= (∂x − 4∂t)(∂t + ∂t)u.

Therefore we have to solve

vx − 4vt = 0 where v = ux + ut.

The first equation has general solution

v(x, t) = h(4x+ t),

where h is an arbitrary differentiable function of one variable. Therefore
we now just need to solve

ux + ut = h(4x+ t).

A particular solution is given by

u(x, t) = f(4x+ t),
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where
f ′ = h/5.

The associated homogeneous equation is

ux + ut = 0.

This has general solution

u(x, t) = g(x− t).
Thus the general solution to the original inhomogeneous equation is

u(x, t) = f(4x+ t) + g(x− t),
where f and g are arbitrary twice differentiable functions. It is expe-
dient to make a slightly different choice of f and rewrite this as

u(x, t) = f(x+ t/4) + g(x− t).
We now want to choose f and g such that

f(x) + g(x) = x2 and f ′(x)/4− g′(x) = ex.

Differentiating the first and replacing x by y, we get

f ′(y) + g′(y) = 2y and f ′(y)/4− g′(y) = ey.

Adding and subtracting we get

5

4
f ′(y) = 2y + ey and 5g(y) = 2y − 4ey.

It follows that

f(y) =
4

5

(
y2 + ey

)
and g(y) =

1

5

(
y2 − 4ey

)
.

Substituting for 4x+ t and x− t we get

f(x+t/4) =
4

5

(
(x+ t/4)2 + ex+t/4

)
and g(x−t) =

1

5

(
(x− t)2 − 4ex−t

)
.

Thus the solution to the PDE with auxiliary conditions is

u(x, t) =
4

5

(
(x+ t/4)2 + ex+t/4

)
+

1

5

(
(x− t)2 − 4ex−t

)
=

4

5

(
ex+t/4 − ex−t

)
+ x2 +

1

4
t2.

Challenge Problems: (Just for fun)

2.1.8. (a) Let v = ru. Then

vr = rur + u and so vrr = rurr + 2ur.

On the other hand
vtt = rutt.
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It follows that

vtt = rutt

= c2 (rurr + 2ur)

= c2vrr.

(b) The general solution of the wave equation for v is

v(r, t) = f(r + ct) + g(r − ct)
where f and g are two arbitrary twice differentiable functions of one
variable. It follows that the general solution of the spherical wave
equation is

u(x, t) = rf(r + ct) + rg(r − ct),
where f and g are two arbitrary twice differentiable functions of one
variable.
(c) We use d’Alembert’s formula for v. We are given

v(r, 0) = rφ(r) and vt(r, 0) = rψ(r).

Thus

u(r, t) =
1

r
v(r, t)

=
1

2
φ(r + ct) +

1

2
φ(r − ct) +

1

2rc

∫ r+ct

r−ct
rψ.
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