MODEL ANSWERS TO THE THIRD HOMEWORK

2.1.1. We apply d’Alembert’s formula. By assumption
o(z) = e” and  ¢(x) =sinz

and so we get

1 1
u(z,t) = 5(6““ +e" ) + 2—C(Cos(m — ct) — cos(z + ct)).

After using some standard identities we get
1
u(z,t) = e® cosh ¢t + — sin x sin ct.
c

2.1.2. We apply d’Alembert’s formula. By assumption
o(z) = log(1 + %) and  Y(x)=4+4=z

and so we get

1 1 .
u(z,t) = E(log(l + (z + ct)?) +log(1 + (x — ct)?)) + 2—(1/2(x +ct)? +4(z +ct) — 1/2(z — ct)’

c
1

= —log(1 + (z +ct)*)(1 + (x — ct)?) + 5t.

2
2.1.3. The wave speed is

T
c=4/—.
p
The nearest point where the hammer strikes to the flea is at
l
— —a.
2

Therefore the distance of the flea from the nearest point from where

the hammer strikes is
l

— — a.

4
The hammer causes a depression as well as imparts velocity to the
string. It follows that there is a wave traveling to the left at speed c.
The disturbance reaches the flea after
l—4a  p'*(l—4a)
de ATV

units of time.



2.1.5. We apply d’Alembert’s formula. By assumption

1 for |z| <a
0 for |z| > a.

¢(x) =0  and @Zﬁ(x):{

Therefore
1 1 x+ct
u(z,t) = §¢(l’ +ct) + §d)(:v —ct) + % - v
1 x+ct
B 2_C r—ct w

1
= 2—{1ength of (x —ct,x 4+ ct) N (—a,a)},
C

since the integral is nothing more than the area under the graph of v,
and this area is just the length of the part of (—a,a) between x — ct
and z + ct.

Now suppose that

t=k-+  where k=1,23,4,5.
2c

We have

a
=1 — k=
T =z—k;

and so
u(z,t) = l{length of (z — kg, T+ k:g) N(—a,a)}.
2c 2 2
2.1.9. We have
Upy — Uyt — dUy = Biu — 30,0,u — 4afu
= (02 — 30,0, — 40} )u
= (0p — 40,)(0; + 0y)u.
Therefore we have to solve
v, —4v, =0 where V= Uy + Uy
The first equation has general solution
v(x,t) = h(dx + t),

where h is an arbitrary differentiable function of one variable. Therefore
we now just need to solve

Uy + up = h(dx +t).
A particular solution is given by

u(w,t) = 4z +1),
2



where
f=h/5.

The associated homogeneous equation is
Uy + ur = 0.
This has general solution
u(z,t) = g(x —t).
Thus the general solution to the original inhomogeneous equation is
u(z,t) = f(dx +t) + gz — 1),

where f and g are arbitrary twice differentiable functions. It is expe-
dient to make a slightly different choice of f and rewrite this as

u(a, 1) = f(z+1/4) + gla — t).
We now want to choose f and ¢ such that
fl@) +g(x) =2 and  fl(x)/4—4(z)=¢"
Differentiating the first and replacing = by y, we get
fw+dy)=2y and  fiy)/4—d'(y) =e"
Adding and subtracting we get
5
Zf/(y) =2y+e’ and 59(y) = 2y — 4év.
It follows that

fly) = % (v’ +¢) and  g(y) =

Substituting for 4z +t and z — ¢t we get

f(:c+t/4):%((:c+t/4)2+e“t/4) and  glz—t) —

Thus the solution to the PDE with auxiliary conditions is

(y2 — 4ey) .

] =

% (2 — 1) — 4" ).

waw=§«wwﬂf+ﬁwﬂ+%«w4f—%“ﬁ
4, . 1
3(6 A _ e t)+x2+1t2.

Challenge Problems: (Just for fun)
2.1.8. (a) Let v = ru. Then

Uy = TU, + U and so Vpp = TUpy + 2U,..
On the other hand

Vit = TUgt-
3



It follows that
Vg = TUyt

= (ruy, + 2u,)

= v,
(b) The general solution of the wave equation for v is

v(r,t) = f(r+ct) + g(r — ct)
where f and ¢ are two arbitrary twice differentiable functions of one
variable. It follows that the general solution of the spherical wave
equation is
uw(x,t) =rf(r+ct)+rg(r—ct),

where f and g are two arbitrary twice differentiable functions of one
variable.
(¢) We use d’Alembert’s formula for v. We are given

v(r,0) = ro(r) and v (1, 0) = rp(r).
Thus

u(r,t) = %v(r, t)

1 1 1 r+ct
- 5¢(r +ct) + §gb(r —ct)+ —/T ).

2re Jo_a



