
MODEL ANSWERS TO THE SECOND HOMEWORK

1.4.1. Try something of the form u(x, t) = at + x2. This certainly
satisfies the initial condition

u(x, 0) = x2.

We have

ut = a and uxx = 2.

Thus

u(t, x) = x2 − 2t

is a solution of the diffusion equation with the correct auxiliary condi-
tion.
1.4.4. (a) With the assumption on the constants, the heat equation
reduces to

ut = ∆u+ f(x)

where

f(x) =

{
0 x < l

2

H x > l
2
.

The steady-state solution satisfies the additional constraint

ut = 0.

The heat equation reduces further to

uxx = −f(x).

We solve this equation on both intervals. Over the interval 0 < x < l/2
we have the equation

uxx = 0

and this has solution

u(x, t) = ax+ b,

where a and b are constants to be determined.
Over the interval l/2 < x < l we have the equation

uxx = −H.
The general solution is

u(x, t) = −Hx2/2 + cx+ d,

where c and d are constants to be determined.
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There are four boundary conditions, what happens at the two end-
points, the condition that both solutions are equal at l/2 and the con-
dition that the heat flow matches at l/2.
The two endpoints give

b = 0 and − Hl2

2
+ cl + d = 0.

Thus

d =
Hl2

2
− cl.

Matching u at x = l/2 gives

al

2
= −Hl

2

8
+
cl

2
+ d.

Matching ux at x = l/2 gives

a = −Hl
2

+ c

Substituting for a and d gives an equation for c:

cl

2
− Hl2

4
= −Hl

2

8
+
cl

2
+
Hl2

2
− cl.

Thus

cl =
5Hl2

8
.

It follows that

c =
5Hl

8
.

Thus

a =
Hl

8
and d = −Hl

2

8
.

The solution is

u(x, t) =

{
Hlx
8

0 ≤ x ≤ l/2

−Hx2

2
+ 5Hlx

8
− Hl2

8
l/2 ≤ x.

(b) Over the interval 0 ≤ x ≤ l/2 the maximum is at x = l/2 and the
maximum is

Hl2

16
.

Over the interval l/2 ≤ x ≤ l the maximum is at x = 5l/8 and the
maximum is

9Hl2

128
.

and this is the hottest temperature, so that x = 5l/8 is the hottest
point.
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1.5.1. The general solution to the ODE is

u(x) = a cosx+ b sinx.

The boundary conditions give

a = 0 and b sinL = 0.

If sinL 6= 0 the second condition implies that b = 0 and the solution
is unique. But if sinL = 0 the second condition is vacuous and u(x) =
b sinx is a solution for any b.
Now sinL = 0 if and only if L = nπ is an integer multiple of π. Thus
the solution is unique if and only if L is not an integer multiple of π.
1.5.5. The characteristic curve has equation

dy

dx
= y.

Thus the characteristic curves are

y = Cex

and the general solution of the PDE is

u(x, y) = f(e−xy),

where f is an arbitrary function of one variable.
(a) We want to choose f so that

x = u(x, 0)

= f(e−x).

Let w = e−x. Then

x = − logw

and

f(w) = − logw.

This gives the solution

u(x, y) = − log(ye−x).

However the logarithm function is not defined at zero. In fact

lim
t→0+

log t = −∞

and so this function does not have the correct behaviour along the
boundary.
(b) We want to choose f so that

1 = u(x, 0)

= f(e−x).
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Let w = e−x. Then

f(w) = 1.

Thus the solution is u(x, y) = 1.
1.6.1. (a) We have a11 = 1, a12 = −2 and a22 = 1. It follows that

a212 = 4

> 1

= a11a22.

Thus we have a hyperbolic PDE.
(b) We have a11 = 9, a12 = 3 and a22 = 1. It follows that

a212 = 9

= a11a22.

Thus we have a parabolic PDE.
1.6.2. We have a11 = 1 + x, a12 = xy and a22 = −y2. It follows that
we have a parabolic PDE when

x2y2 = a212
= a11a22

= −(1 + x)y2.

It follows that either y = 0 or x2 + x+ 1 = 0. As

12 < 4

there are no real solutions to the second equation and we have a par-
abolic PDE if and only if y = 0. If y 6= 0 then a212 > a11a22 and so
we have a hyperbolic PDE. 2 1.6.4. We have a11 = 1, a12 = −2 and
a22 = 4. It follows that

a212 = 4

= 4

= a11a22.

Thus we have a parabolic PDE.
Suppose that

u(x, y) = f(y + 2x) + xg(y + 2x).

Then

ux = 2f ′(y+2x)+g(y+2x)+2xg′(y+2x) and uy = f ′(y+2x)+xg′(y+2x).
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It follows that

uxx = 4f ′′(y + 2x) + 2g′(y + 2x) + 2g′(y + 2x) + 4xg′′(y + 2x)

uxy = 2f ′′(y + 2x) + g′(y + 2x) + 2xg′′(y + 2x)

uyy = f ′′(y + 2x) + xg′′(y + 2x).

Thus

uxx − 4uxy + 4uyy = (4− 4 · 2 + 4)f ′′(y + 2x) + (4− 4)g′(y + 2x) + (4− 4 · 2 + 4)xg′′(y + 2x)

= 0.

1.6.5. If we put
u = veαx+βy

then

ux = αu+ vxe
αx+βy and uy = βu+ vye

αx+βy.

It follows that

uxx = α2u+ 2αvxe
αx+βy + vxxe

αx+βy

uyy = β2u+ 2βvye
αx+βy + vyye

αx+βy.

We want to choose α and β so that the coefficients of vx and vy are
zero:

2α− 2 = 0 and 6β + 24 = 0.

Thus we let
α = 1 and β = −4.

The coefficient of v is then

1 + 3 · 42 − 2− 24 · 4 + 5 = −44.

The PDE then reduces to

vxx + 3vyy − 44v = 0.

If we put
y′ = γy

then
δy = γδy′ .

It follows that
vyy = γ2vy′y′ .

So if we pick γ =
√

3 then we reduced to

vxx + vy′y′ − 44v = 0.

Challenge Problems: (Just for fun)
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1.4.6. (a) At equilibrium we have ut = 0 and so the heat equation reads

uxx = 0.

Solving on the interval 0 ≤ x ≤ L1 we have

u(x, t) = ax+ b

and on the interval L1 ≤ x ≤ L1 + L2 we have

u(x, t) = cx+ d.

There are four boundary conditions, what happens at the two end-
points, and the condition that both u and the flux are continuous. As
the temperature is zero at 0 we have

b = u(0, t) = 0.

As the temperature is T at x = L1 + L2 have

c(L1 + L2) + d = T.

As u is continuous at x = L1 we have

aL1 = cL1 + d

As the flux is continuous at x = L1 we must have

κ1a = κ2c.

From the second equation we get

d = T − c(L1 + L2).

Plugging this into the third equation gives

T = aL1 + cL2.

Multiplying through by κ2 and using the fourth equation gives

κ2T = κ2aL1 + κ1aL2 = a(κ2L1 + κ1L2).

It follows that

a =
κ2T

κ2L1 + κ1L2

.

From there we get

c =
κ1T

κ2L1 + κ1L2

.

It follows that

d =
(κ2 − κ1)L1T

κ2L1 + κ1L2

.

Thus

u(x, t) =

{
κ2Tx

κ2L1+κ1L2
for 0 < x < L1

κ1Tx
κ2L1+κ1L2

+ (κ2−κ1)L1T
κ2L1+κ1L2

for L1 < x < L1 + L2.
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Note that we are free to replace κ by k in the formulae above, simply
by dividing top and bottom of the fractions by cρ.
(b) In this case we have

k2L1 + k1L2 = 1 · 3 + 2 · 1 = 5

so that

u(x, t) =

{
2x for 0 < x < 3

4x− 6 for 3 < x < 5.

1.4.7. (a) By assumption

∂~v

∂t
+
c20
ρ0

grad ρ = 0.

Therefore

∂ curl~v

∂t
= curl

∂~v

∂t

= − curl
c20
ρ0

grad ρ

= − c
2
0

ρ0
curl grad ρ

= − c
2
0

ρ0
∇×∇ρ

= ~0.

But then curl~v is constant, so that if it is zero to begin with, it is zero
for all time.
(b) We have

∂2~v

∂t2
= − c

2
0

ρ0

∂ grad ρ

∂t

= − c
2
0

ρ0
grad

∂ρ

∂t

= c20 grad div~v

= c20∇ · ∇~v
= c20∆~v −∆×∆× ~v
= c20∆~v.
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On the other hand,

∂2φ

∂t2
= −ρ0

∂ div~v

∂t

= −ρ0 div
∂~v

∂t
= c20 div gradφ

= c20∆φ.
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