MODEL ANSWERS TO THE SECOND HOMEWORK

1.4.1. Try something of the form u(x,t) = at + x?. This certainly
satisfies the initial condition

u(z,0) = 2°.
We have
U = a and Upy = 2.
Thus
u(t,x) = 2% — 2t
is a solution of the diffusion equation with the correct auxiliary condi-
tion.

1.4.4. (a) With the assumption on the constants, the heat equation
reduces to

up = Au + f(x)

where
B 0 x<%
f(m)_{H $>é.

The steady-state solution satisfies the additional constraint
Ut = 0.
The heat equation reduces further to

Uz = — f ().

We solve this equation on both intervals. Over the interval 0 < z < [/2
we have the equation

Ugy = 0
and this has solution
u(z,t) = ax + b,
where a and b are constants to be determined.
Over the interval [/2 < x <[ we have the equation

Ugpe = —H.
The general solution is
u(z,t) = —H2?/2 + cx + d,

where ¢ and d are constants to be determined.
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There are four boundary conditions, what happens at the two end-
points, the condition that both solutions are equal at [/2 and the con-
dition that the heat flow matches at {/2.

The two endpoints give

H2
b=0 and —TZ+cl+d:O.
Thus )
H
d:—l—cl.
2
Matching u at x = [/2 gives
al Hl2+cl+d
28 2
Matching u, at z = [/2 gives
B Hl+
a=——+tc

Substituting for a and d gives an equation for c:
c HP*  HP «c HP

2 1 s gt 4
Thus
; 5HI?
C g
8
It follows that
5HI
c=—.
8
Thus l )
H
a=— and d= —ﬂ.
8 8
The solution is
Hlx
=t 0<z<I/2
u(z,t) =9 3.2 . 2 o _
U o 125

(b) Over the interval 0 < x < [/2 the maximum is at x = [/2 and the
maximum is

HI?

16
Over the interval [/2 < z < [ the maximum is at = 5[/8 and the
maximum is

9HI?

128 °
and this is the hottest temperature, so that x = 5[/8 is the hottest
point.
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1.5.1. The general solution to the ODE is
u(xr) = acosx + bsinx.
The boundary conditions give
a=0 and bsin L = 0.

If sin L # 0 the second condition implies that b = 0 and the solution
is unique. But if sin L = 0 the second condition is vacuous and u(z) =
bsin x is a solution for any b.

Now sin L = 0 if and only if L. = n7 is an integer multiple of 7. Thus
the solution is unique if and only if L is not an integer multiple of .
1.5.5. The characteristic curve has equation

dy B

dr 4
Thus the characteristic curves are

y=Ce”

and the general solution of the PDE is
u(z,y) = fle™"y),

where f is an arbitrary function of one variable.
(a) We want to choose f so that

x = u(x,0)
= f(e™)
Let w =e™*. Then
r = —logw
and
f(w) = —logw.

This gives the solution
u(z, y) = —log(ye™).
However the logarithm function is not defined at zero. In fact

lim logt = —o0
t—0t+

and so this function does not have the correct behaviour along the
boundary.
(b) We want to choose f so that

1 =u(x,0)
= f(e™).

3



Let w = e™*. Then
flw) =1.
Thus the solution is u(z,y) = 1.
1.6.1. (a) We have a1; = 1, a;o = —2 and agy = 1. It follows that
aty =4
> 1
= a110a22.
Thus we have a hyperbolic PDE.
(b) We have a;; = 9, a12 = 3 and ag = 1. It follows that
a%Q =9
= a11022.
Thus we have a parabolic PDE.

1.6.2. We have a;; = 1+, ajo = vy and as = —y?. It follows that
we have a parabolic PDE when
$2?J2 = a%2
= (11022

= —(1+2)y°
It follows that either y =0 or 22 + x+ 1 =0. As
12<4

there are no real solutions to the second equation and we have a par-
abolic PDE if and only if y = 0. If y # 0 then a2, > ajjas and so
we have a hyperbolic PDE. 2 1.6.4. We have a;; = 1, a;s = —2 and
ass = 4. It follows that

2
aj, =4
=4
= a110A22.

Thus we have a parabolic PDE.
Suppose that

u(z,y) = f(y +2z) + zg(y + 2).
Then

uy = 2f' (y+2x)+g(y+2x)+2xg (y+2x)  and  u, = f'(y+22)+xg (y+22).
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It follows that
Upw = 4F"(y + 22) + 20/ (y + 22) + 29/ (y + 22) + 4ag" (y + 22)
Upy = 21" (y + 22) + ¢'(y + 22) + 229" (y + 22)
Uy, = f"(y + 22) + 29" (y + 27).
Thus
(4—4-24 D" (y+22)+ (@A —4)g (y+22) + (4 — 4 -2+ D)xg" (y + 2x)
0.

Ugg — gy + duy,

1.6.5. If we put

then

az+Py

Uy = U + Ve and u, = Pu+ vyea”By.

It follows that
Upy = QU + 2000,V 1y, O BY
Uy = BPu + 280, oy, 0T TPY,

We want to choose o and 3 so that the coefficients of v, and v, are
ZEro:

20— 2=0 and 66+ 24 =0.
Thus we let
a=1 and g = —4.
The coefficient of v is then
1+3-42-2-24-4+5=—44.
The PDE then reduces to
Vgg + 30y, — 440 = 0.
If we put

y =y
then
5y = ’}/591.
It follows that
Vyy = 7V Vyry.
So if we pick v = v/3 then we reduced to

Vgg + Uy — 44v = 0.

Challenge Problems: (Just for fun)
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1.4.6. (a) At equilibrium we have u; = 0 and so the heat equation reads
Ugy = 0.
Solving on the interval 0 < x < L; we have
u(z,t) =ax+0b
and on the interval L; <z < L; + Lo we have
u(z,t) = cx +d.

There are four boundary conditions, what happens at the two end-
points, and the condition that both u and the flux are continuous. As
the temperature is zero at 0 we have

b=u(0,t) =0.
As the temperature is T" at x = Ly + Ly have
c(Ly+ Ly) +d=T.
As v is continuous at £ = L; we have
ali=cL;+d
As the flux is continuous at x = L; we must have
K10 = KaC.
From the second equation we get
d=T —c(Ly + Ls).
Plugging this into the third equation gives
T =aly+ cLs.
Multiplying through by ko and using the fourth equation gives
kol = koaly + K1aLe = a(ke Ly + K1 Ls).

It follows that
HQT

kol + Kk1Lo

From there we get
K}lT

koly + KLy

It follows that
_ (/ﬁ?g — K)l)LlT
K,QLl + /€1L2 ’
Thus

roTx
u(x,t):{—“2L1+”1L2 forO<ax< Iy

k1T (ka—k1)L1T
ral1+k1L2 + rali+k1L2 for Ly <@ <Li+ Ly
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Note that we are free to replace x by k in the formulae above, simply
by dividing top and bottom of the fractions by cp.
(b) In this case we have

k2L1+k1L2:13+21I5

so that

2x for 0 <z <3
u(z,t) =
4r—6 for3 <z <b.

1.4.7. (a) By assumption

v c?
e + p_(()) grad p = 0.
Therefore
0 curl v | ov
= curl —
ot ot
2
= —curl 2 grad p
Po
2
= — Y curlgrad p
Po
2
— -y xvp
Po
= 0.

But then curl ¥ is constant, so that if it is zero to begin with, it is zero
for all time.
(b) We have

@ _ ﬁ dgrad p
8t2 £o ot

2 L
= ¢y grad div v
=V - Vi

= AT — A XA X
— 2 A7

= cyAT.

7



On the other hand,

@__ ddiv v
oz~ Mo
ov

— o div —

Po d1v ot

= ¢f div grad ¢

= g Ag.



