
MODEL ANSWERS TO THE FIRST HOMEWORK

1.1.2 (a) linear;

L (u+ v) = (u+ v)x + x(u+ v)y

= ux + vx + xuy + xvy

= L u+ L v

and

L (cu) = (cu)x + x(cu)x

= cux + cxux

= cL u.

(b) Not linear;

L (2u) = (2u)x + (2u)(2u)y

= 2ux + 4uuy

6= 2ux + 2uuy

= 2 L u.

(d) Not linear;

L (2u) = (2u)x + (2u)y + 1

6= 2ux + 2uy + 2

= 2 L u.

1.1.3 (a) The order is two, due to the term uxx; it is linear inhomoge-
neous, as we can put the equation into the form

ut − uxx = −1

and the operator

L =
∂

∂t
− ∂2

∂x2

is linear;

L (u+ v) = (u+ v)t − (u+ v)xx

= ut + vt − uxx − vxx
= L u+ L v

1



and

L (cu) = (cu)t − (cu)xx

= cut − cuxx
= cL u.

(c) The order is three, due to the term uxxt; it is nonlinear, as there is
no term that does not depend on u and the operator

f(u) = ut − uxxt + uux

is not linear;

f(2u) = (2u)t − (2u)xxt + (2u)(2u)x

= 2ut − 2uxxt + 4uux

6= 2ut − 2uxxt + 2uux

= 2f(u).

(e) The order is two, due to the term uxx; it is linear homogeneous, as
the operator

L = i
∂

∂t
− ∂2

∂x2
+
u

x

is linear;

L (u+ v) = i(u+ v)t − (u+ v)xx +
(u+ v)

x

= iut + ivt − vxx − uxx +
u

x
+
v

x
= L u+ L v

and

L (cu) = (ciu)t − (cu)xx +
cu

x

= ciut − cuxx + c
u

x
= cL u.

(h) The order is four, due to the term uxxxx; it is nonlinear, as there is
no term that does not depend on u and the operator

f(u) = ut + uxxxx +
√

1 + u
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is not linear;

f(2u) = (2u)t − (2u)xxxx +
√

1 + 2u

= 2ut − 2uxxxx +
√

1 + 2u

6= 2ut − 2uxxxx + 2
√

1 + u

= 2f(u).

1.1.4 Suppose that u1 and u2 are two solutions of the inhomogeneous
linear equation

L u = g.

It follows that

L u1 = g and L u2 = g.

We have

L (u1 − u2) = L u1 + L (−u2)
= L u1 −L u2

= g − g
= 0.

Thus u1 − u2 is a solution of the homogeneous linear equation

L u = 0.

1.1.12 Suppose that

u(x, y) = sinnx sinhny

Then

ux = n cosnx sinhny and uy = n sinnx coshny.

It follows that

uxx = −n2 sinnx sinhny and uy = n2 sinnx sinhny.

Hence

uxx + uyy = 0,

so that

u(x, y) = sinnx sinhny

is a solution of Laplace’s equation.
1.2.1 The general solution to the PDE

2ut + 3ux = 0,

is

u(x, t) = f(2x− 3t).
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If we impose the auxiliary condition then we get

sinx = u(x, 0)

= f(2x).

If we put

w = 2x so that x =
w

2
then we get

f(w) = sin
w

2
.

Thus

u(x, t) = sin

(
2x− 3t

2

)
.

1.2.2 Let v = uy. Then

0 = 3uy + uxy

= 3v + vx.

We have a linear equation for v,

vx + 3v = 0.

Solving this like we would an ODE we get the general solution

v(x, y) = f(y)e−3x.

This gives us a PDE for u,

uy = f(y)e−3x.

This has general solution

u(x, y) = F (y)e−3x +G(x),

where F and G are arbitrary functions of one variable.
1.2.6 At the point (x, y) the characteristic curve has tangent vector

(
√

1− x2, 1).

Thus the characteristic curve is a solution of the ODE
dy

dx
=

1√
1− x2

.

The characteristic curves therefore have equation

y = arcsinx+ c

so that the general solution is

u(x, y) = f(y − arcsin y)

where f is an arbitrary function of one variable.
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If we impose the auxiliary condition then we get

y = u(0, y)

= f(y).

Thus the solution is

u(x, y) = y − arcsin(x).

1.2.9 The PDE

ux + uy = 1

is inhomogeneous linear. A particular solution of this PDE is u(x, y) =
x, as then

ux = 1 and uy = 0.

The associated homogeneous linear equation

ux + uy = 0

has general solution

u(x, y) = f(x− y),

where f is an arbitrary function of one variable. It follows that the
general solution of the inhomogeneous linear equation is

u(x, y) = x+ f(x− y),

where f is an arbitrary function of one variable.
1.3.6 The three dimensional heat equation is

cρut = ∇ · (κ∇u)

We assume that κ is constant, so that the PDE reduces to

ut = k∆u.

If we make the axis of the cylinder the z-axis then cylindrical coordi-
nates use the coordinates r, θ and z, where r and θ are polar coordinates
for x and y:

x = r cos θ y = r sin θ and z = z.

By asumption uzz = 0 and uθ = 0. It follows that

∆u = uxx + uyy.

We have

r =
√
x2 + y2.
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The chain rule gives

uxx = (ux)x

= (xr−1ur)x

= r−1ur − x2r−3ur + x2r−2urr.

Similarly

uyy = (uy)y

= (yr−1ur)y

= r−1ur − y2r−3ur + y2r−2urr.

It follows that

∆u = uxx + uyy

= r−1ur − x2r−3ur + x2r−3urr + r−1ur − y2r−2ur + y2r−2urr

= 2r−1ur − (x2 + y2)r−3ur + (x2 + y2)r−2urr

= urr + r−1ur.

Thus the heat equation reduces to

ut = k(urr + ur/r).

1.3.7 As before, we assume that κ is constant, so that the PDE for the
heat equation reduces to

ut = k∆u.

In spherical coordinates we have (ρ, θ, φ) where ρ is the distance to the
origin, θ is the same angle as in cylindrical coordinates and φ is the
angle from the z-axis. We have

ρ =
√
x2 + y2 + z2

By asumption uθ = 0 and uφ = 0. We rename ρ = r. The chain rule
gives

uxx = (ux)x

= (xr−1ur)x

= r−1ur − x2r−3ur + x2r−2urr.

Similarly

uyy = r−1ur−y2r−3ur+y2r−2urr and uzz = r−1ur−z2r−3ur+z2r−2urr.
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Therefore

∆u = uxx + uyy + uzz

= r−1ur − x2r−3ur + x2r−3urr + r−1ur − y2r−2ur + y2r−2urr + r−1ur − z2r−3ur + z2r−2urr

= 3r−1ur − (x2 + y2 + z2)r−3ur + (x2 + y2 + z2)r−2urr

= urr + 2r−1ur.

Thus the heat equation reduces to

ut = k(urr + 2ur/r).

Challenge Problems: (Just for fun)

1.2.13 We want to solve

ux + 2uy + (2x− y)u = 2x2 + 3xy − 2y2.

We use the change of coordinates

x′ = x+ 2y and y′ = 2x− y.
We have already seen in the lecture notes that

ux + 2uy = 5ux′ .

As
(x+ 2y)(2x− y) = 2x2 − 3xy + y2.

the PDE reduces to
5ux′ + y′u = x′y′.

This is a linear inhomogeneous equation.
We first guess a solution. We try u(x′, y′) = x′. This is not quite right.
If we subtract 5/y′ we get an exact solution

u(x′, y′) = x′ − 5/y′.

The associated homogeneous linear equation is

5ux′ + y′u = 0.

Treating this like an ODE, and using separation of variables, the general
solution of the homogeneous linear equation is

u(x′, y′) = f(y′)e−x
′y′/5

where f is an arbitrary function of one variable.
Thus the general solution to the inhomogeneous is

u(x′, y′) = f(y′)e−x
′y′/5 + x′ − 5/y′

Substituting for x and y we get

u(x, y) = f(2x− y)e−(x+2y)(2x−y)/5 + x+ 2y − 1/(2x− y),
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is the general solution to the original PDE.
1.3.11 Recall the statement of Stokes’ theorem. Let C be any closed
curve and let S be any surface bounding C. Let ~F be a vector field on
S. ∮

C

~F · d~r =

∫∫
S

(∇× ~F ) · n̂ dS.

By assumption,
∇× ~v = 0,

so that the RHS is zero. Therefore∮
C

~v · d~r = 0,

for any closed curve C.
This means that we can define a scalar function φ(x, y, z) as follows.
Pick a point p of space and pick a curve γ connecting the origin to this
point, for example the straight line connecting the origin to this point.
Define

φ(x, y, z) =

∫
γ

~v · d~r.

If we want to compute the derivative of φ in the ı̂ direction, then
consider a line starting at p = (x, y, z) parallel to ı̂.

γ1(t) = (x+ t, y, z, )

As the integral around any closed curve is zero, we have

φ(x+ t, y, z)− φ(x, y, z) =

∫
γ1

~v · d~r.

Computing the line integral on the RHS the usual way, we get

φx = v1,

the first component of ~v.
By symmetry we have

∇φ = ~v.
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