MODEL ANSWERS TO THE FIRST HOMEWORK

1.1.2 (a) linear;
Lu+v)=(u+v), +z(u+v),

= Uz + Vg + TUy + TV

=%u+ L
and

ZL(cu) = (cu)y + z(cu),
= ClUy, + CTU,
=cZu.
(b) Not linear;
Z(2u) = (2u), + (2u)(2u),
= 2u, + 4uu,
# 2u, + 2uu,
=22 u.
(d) Not linear;
Z(2u) = (2u)y + (2u), +1
# 2ug + 2u, + 2
=22 u.

1.1.3 (a) The order is two, due to the term u,,; it is linear inhomoge-
neous, as we can put the equation into the form

U — Ugy = -1
and the operator
0 0?
===
ot Ox?

is linear;

Lu+v)=(u+v)— (u+0)p
= Ut + U — Ugy — Vgg
=ZLu+ZLv
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and

L(cu) = (cu)y — (cu) pp

=cZu.

(c) The order is three, due to the term w,,; it is nonlinear, as there is
no term that does not depend on u and the operator

f('LL) = Ut — Uggt + Uy
is not linear;
f2u) = (2u); — (2u) et + (2u)(2u),

= 2up — 2Ugy + duu,
22Uy — Uy + 2uuy,

=2f(u).

(e) The order is two, due to the term u,,; it is linear homogeneous, as
the operator

0 0?
g=il 2 U
ot 0r2 =
is linear;
. U+ v
f(u+v):z(u+v)t—(u+v)m+( . )
) ) u v
=W+ W — Vg — Uge + — + —
r oz
=%u+ Lo
and

cu

Z(cu) = (ciu)y — (cu) e + —
x

) U

= ClUt — ClUgy + C—

x

=cLu.

(h) The order is four, due to the term u,,,,; it is nonlinear, as there is
no term that does not depend on u and the operator

f(u>:ut+u;tzx:v+\/1+u
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is not linear;
F(2u) = (2u); — (24) pawe + V1 + 2u

= 2U; — 2Uppae + V1+2u

72U — 2Uggzy + 2v1+u

= 2f(u).
1.1.4 Suppose that u; and us are two solutions of the inhomogeneous
linear equation

ZLu=yg.
It follows that
Lu =g and ZLus = g.

We have
L(ug —ug) = Luy + L (—uz)
=L u — L us
=g—4g
=0.

Thus u; — us is a solution of the homogeneous linear equation
ZLu=0.
1.1.12 Suppose that
u(z,y) = sinnx sinh ny

Then

u, = ncosnxsinhny and Uy = nsinnx cosh ny.
It follows that

Uge = —n? sinna sinh ny and Uy = n? sin na sinh ny.

Hence

Ugg + Uyy = 0,
so that

u(z,y) = sinnzx sinh ny

is a solution of Laplace’s equation.
1.2.1 The general solution to the PDE

2Ut + SUZ = O,
is

u(z,t) = f(2x — 3t).
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If we impose the auxiliary condition then we get

sinz = u(x,0)

= f(2z).
If we put
w
w = 2x so that xr = 3
then we get
. w
f(w) = sin 5

Thus

. (22— 3t
u(z,t) :sm( 5 )

1.2.2 Let v = u,. Then
0 = 3uy + Ugy
= 3v + v,.
We have a linear equation for v,
v, + 3v = 0.
Solving this like we would an ODE we get the general solution
v(z,y) = fly)e ™.
This gives us a PDE for u,
uy = fy)e ™.
This has general solution
u(z,y) = Fy)e™ + G(z),

where F' and G are arbitrary functions of one variable.
1.2.6 At the point (z,y) the characteristic curve has tangent vector

(V1—a2,1).

Thus the characteristic curve is a solution of the ODE

dy_ 1

dr 1 —2a2
The characteristic curves therefore have equation

y = arcsinx + ¢
so that the general solution is

u(z,y) = f(y — arcsiny)

where f is an arbitrary function of one variable.
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If we impose the auxiliary condition then we get
y = u(0,y)
= f(y).
Thus the solution is
u(z,y) = y — arcsin(z).
1.2.9 The PDE
Uy +uy =1

is inhomogeneous linear. A particular solution of this PDE is u(x,y) =
x, as then

Uy = 1 and uy = 0.
The associated homogeneous linear equation
Uy + Uy =0
has general solution
u(z,y) = flz —y),

where f is an arbitrary function of one variable. It follows that the
general solution of the inhomogeneous linear equation is

u(z,y) =z + fz—y),

where f is an arbitrary function of one variable.
1.3.6 The three dimensional heat equation is

cpuy =V - (kVu)
We assume that x is constant, so that the PDE reduces to
u; = kAu.

If we make the axis of the cylinder the z-axis then cylindrical coordi-
nates use the coordinates r, # and z, where r and 6 are polar coordinates
for x and y:

x =rcost y=rsind and z=2z.
By asumption u,, = 0 and ug = 0. It follows that
AU = Ugy + Uy,

We have

F— TP
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The chain rule gives

Similarly

Uyy = (Uy)y

= (yrilur)y

1

=7 U — y2r* 2

3 2 —
Upr + YT “Upp.

It follows that

AU = Ugy + Uy,

3 2

= r_lur — x2r_3uT + 2%r Upr + r_luT — y2r_2ur + y27“_ Uy
= 2rtu, — (2 + yH)r 3, + (22 + D) 2,
= Uppr + r_lur.
Thus the heat equation reduces to
up = k(up + u, /7).

1.3.7 As before, we assume that x is constant, so that the PDE for the
heat equation reduces to

Ut = kAuw.

In spherical coordinates we have (p, 8, ¢) where p is the distance to the
origin, # is the same angle as in cylindrical coordinates and ¢ is the
angle from the z-axis. We have

p=x2+y?+ 22

By asumption uy = 0 and uy, = 0. We rename p = r. The chain rule
gives

= (acr_lur)x

-1 2. -3

=7 U, —XTT 2

Uy + 2 Uy«

Similarly

-1 2 — 2 -2 -
Uyy =T Up=Y T “UptY T “Upy and Uyy =T
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ur—22r_3u,,—|—227’_
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Therefore

AU = Ugy + Uyy + Uz

1

=, — 223w, 4 22w e e — P 2w+ R R ey — 22 3, 4 22,

=3rtu, — (22 + P+ 2D+ (22 P+ 2D,
= w4+ 2r tu,.
Thus the heat equation reduces to

wp = k(upr + 2u, /7).

Challenge Problems: (Just for fun)

1.2.13 We want to solve
u, + 2u, + (22 — y)u = 22% + 3y — 297
We use the change of coordinates
¥ =x+2y and Yy =2z —y.
We have already seen in the lecture notes that
Uy + 2Uy = DUy .
As
(z +2y) (22 — y) = 22 — 3oy + y*.
the PDE reduces to
Sy +y'u =1y
This is a linear inhomogeneous equation.
We first guess a solution. We try u(z’,y’) = 2/. This is not quite right.
If we subtract 5/y" we get an exact solution
u(z' y') =2 —5/y.
The associated homogeneous linear equation is
Sty + y'u = 0.

Treating this like an ODE, and using separation of variables, the general
solution of the homogeneous linear equation is

(@) = fly)e ™V /°
where f is an arbitrary function of one variable.
Thus the general solution to the inhomogeneous is

(@) = fy)e™™ P +al =5y
Substituting for = and y we get

u(z,y) = f(2x —y)e TS 4 gy 9y — 1/(20 — y),
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is the general solution to the original PDE.
1.3.11 Recall the statement of Stokes’ theorem. Let C be any closed
curve and let S be any surface bounding C. Let F' be a vector field on

S.
fﬁ-df://(vXﬁ)-ﬁdS.
C S

V x7=0,
so that the RHS is zero. Therefore

7{ v-dr=0,

c

for any closed curve C.

This means that we can define a scalar function ¢(z,y, z) as follows.
Pick a point p of space and pick a curve  connecting the origin to this

point, for example the straight line connecting the origin to this point.
Define

By assumption,

o(z,y,2) = /17- dr.
g
If we want to compute the derivative of ¢ in the 2 direction, then
consider a line starting at p = (x,y, z) parallel to .
’}/1<t> = (l’ + t7y7 2 )
As the integral around any closed curve is zero, we have

71
Computing the line integral on the RHS the usual way, we get

¢x = V1,

the first component of .

By symmetry we have
Vo =1.



