
23. Harmonic functions

Recall Laplace’s equation

∆u = uxx = 0

∆u = uxx + uyy = 0

∆u = uxx + uyy + uzz = 0.

Solutions to Laplace’s equation are called harmonic functions.
The inhomogeneous version of Laplace’s equation

∆u = f

is called the Poisson equation.
Harmonic functions are Laplace’s equation turn up in many different

places in mathematics and physics.
Harmonic functions in one variable are easy to describe. The general

solution of
uxx = 0

is u(x) = ax+ b, for constants a and b.
Maximum principle Let D be a connected and bounded open set

in R2. Let u(x, y) be a harmonic function on D that has a continuous
extension to the boundary ∂D of D.

Then the maximum (and minimum) of u are attained on the bound-
ary and if they are attained anywhere else than u is constant.

Euivalently, there are two points (xm, ym) and (xM , yM) on the bound-
ary such that

u(xm, ym) ≤ u(x, y) ≤ u(xM , yM)

for every point of D and if we have equality then u is constant.
The idea of the proof is as follows. At a maximum point of u in D

we must have uxx ≤ 0 and uyy ≤ 0. Most of the time one of these
inequalities is strict and so

0 = uxx + uyy < 0,

which is not possible. The only reason this is not a full proof is that
sometimes both uxx = uyy = 0.

As before, to fix this, simply perturb away from zero. Let ε > 0 and
let

v(x, y) = u(x, y) + ε(x2 + y2).

Then

∆v = ∆u+ ε∆(x2 + y2)

= 4ε

> 0.
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Thus v has no maximum in D.
As v is continuous it must achieve its maximum at (x0, y0) ∈ ∂D.

For any (x, y) ∈ D we have

u(x, y) ≤ v(x, y)

≤ v(x0, y0)

= u(x0, y0) + ε(x20 + y20)

max
(x1,y1)∈∂D

u(x1, y1) + εl2,

where l is the greatest distance of the boundary to the origin.
As this is true for every ε, we must have

u(x, y) ≤ max
(x1,y1)∈∂D

u(x1, y1).

For the minimum, just apply the maximum principle to −u which is
harmonic.

As usual, we can use this to prove uniqueness of solutions. For
example, consider the Dirichlet problem

∆u = f on D and u = h on ∂D.

Suppose there were two solutions u and v. Consider the difference
w = v − u. Then w is harmonic and zero on the boundary. By the
maxmimum principle, w ≤ 0 and by the minimum principle w ≥ 0.
But then w = 0 so that u = v and the solution is unique.

We now turn to trying to solve Laplace’s equation. The answer
depends heavily on the geometry of D.

We use the following rubric

(i) Look for separated solutions of the PDE.
(ii) Impose the homogeneous boundary conditions.

(iii) Sum the series.
(iv) Impose the inhomogeneous initial and boundary conditions.

We carry this out for a rectangle,

(0, a)× (0, b).

Let’s suppose that we have one of each of the three standard boundary
conditions on each side.

u = j(y) ux = h(y) uy + u = h(x) and u = g(x).

As the Laplacian is linear we can break up the solution we are looking
for into four parts

u = u1 + u2 + u3 + u4.
2



We can think of u1 as being a harmonic function which satisfies the
boundary condition for j, where we set all three other functions equal
to zero, and so on around the sides of the rectangle.

So let’s deal with the case that only g is non-zero.
We now separate variables

u(x, y) = X(x)Y (y).

Then

X ′′Y +XY ′′ = 0,

so that
X ′′

X
= −Y

′′

Y
.

As usual this implies both sides are constant. It follows that

X ′′ = −λX and Y ′′ = λY,

for some constant λ. The boundary conditions imply that X(0) =
X ′(a) = 0, so that

λn =

(
n+

1

2

)2

,

for n = 1, 2, . . . . Thus

βn = n+
1

2
The eigenfunctions for X are

Xn(x) = sin
(n+ 1

2
)πx

a
.

The boundary conditions for Y are

Y ′(0) + Y (0) = 0.

The solutions of the ODE are exponentials and it is best to write them
as

Yn(y) = A cosh βny +B sinh βny.

The boundary conditions reduce to

A+ βnB = 0.

It we take B = −1 then A = βn and we get

Yn(y) = βn cosh βny − sinh βny.

Now we sum

u(x, y) =
∑
n

An sin βnx(βn cosh βny − sinh βny).
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This satisfies the homogeneous boundary conditions. We now tune the
coefficients A1, A2, . . . to fit the boundary condition

u(x, b) = g(x).

This gives

g(x) =
∑
n

An(βn cosh βnb− sinh βnb) sin βnx.

Notice that this is simply a Fourier series in the eigenfunctions
sin βnx. Thus the coefficients are determined by the usual formula

An =
2

a
(βn cosh βnb− sinh βnb)

−1
∫ a

0

g(x) sin βnx dx.

4


	23. Harmonic functions

