
22. Inner products and orthogonality

Fix an interval (a, b). We define the inner product of two functions
f and g on (a, b) as

(f, g) =

∫ b

a

f(x)g(x) dx.

The inner product is a real number. We say that f and g are or-
thogonal if the inner product is zero.

The key property of the Fourier sine series, the Fourier cosine series
and the Fourier series is that the eigenfunctions are orthogonal, over
the intervals (0, l), (0, l), and (−l, l).

In fact this is no coincidence. Suppose that X1 and X2 are two
eigenfunctions with eigenvalues λ1 and λ2, that is,

X ′′
1 = −λ1X1 and X ′′

2 = −λ2X2.

We have

(−X ′
1X2 +X1X

′
2)

′ = −X ′′
1X2 −X ′

1X
′
2 +X ′

1X
′
2 +X1X

′′
2

= −X ′′
1X2 +X1X

′′
2 .

If we integrate both sides we get∫ b

a

(−X ′′
1X2 +X1X

′′
2 ) dx =

∫ b

a

(−X ′
1X2 +X1X

′
2)

′ dx

=

[
−X ′

1X2 +X1X
′
2

]b
a

.

Now consider the various types of boundary conditions.

Dirichlet: In this case X1(a) = X2(a) = X1(b) = X2(b) = 0. It follows
that when we evaluate the last expression we get zero, since
every term is zero.

Neumann: In this case X ′
1(a) = X ′

2(a) = X ′
1(b) = X ′

2(b) = 0. It follows
that when we evaluate the last term we get zero, since every
term is still zero.

Periodic: In this case Xj(a) = Xj(b) and X ′
j(a) = X ′

j(b) for every index
j. Now we get zero, as the terms at b cancel with the terms at
a.

Robin: One can check we still get zero.
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Now consider the LHS. As we have eigenfunctions, we get

0 =

∫ b

a

(−X ′′
1X2 +X1X

′′
2 ) dx

=

∫ b

a

(−λ1X1X2 + λ2X1X2) dx

= (λ2 − λ1)
∫ b

a

X1X2 dx.

It follows that if λ1 6= λ2 then X1 and X2 are orthogonal.
In short, eigenfunctions with different eigenvalues are automatically

orthogonal.
Consider boundary conditions of the form

α1X(a) + β1X(b) + γ1X
′(a) + δ1X

′(b) = 0

α2X(a) + β2X(b) + γ2X
′(a) + δ2X

′(b) = 0.

Here the symbols using Greek letters are real constants. We say that
these boundary conditions are symmetric if[

f ′(x)g(x)− f(x)g′(x)

]b
a

= 0

for any pair of functions f and g which satisfy the boundary conditions.
Note that all four boundary conditions above are symmetric.

Theorem 22.1. If the boundary conditions are symmetric then eigen-
functions with different eigenvalues are orthogonal.

Proof. Suppose that X1 and X2 are two eigenfunctions with eigenvalues
λ1 and λ2. As we have symmetric boundary conditions we have[

X ′
1(x)X2(x)−X1(x)X ′

2(x)

]b
a

= 0.

It follows that ∫ b

a

(−X ′′
1X2 +X1X

′′
2 ) dx = 0.

Arguing as before, this implies that

(λ2 − λ1)
∫ b

a

X1X2 dx = 0,

so that if λ1 6= λ2 then X1 and X2 are orthogonal. �
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As a variation on a theme, we can define an inner product of complex
valued functions defined on the interval (a, b). As usual this involves
complex conjugation.

(f, g) =

∫ b

a

f(x)g(x) dx.

The symmetric condition now becomes[
f ′(x)g(x)− f(x)g′(x)

]b
a

= 0

Theorem 22.2. If the boundary conditions are symmetric then the
eigenvalues are all real and we can find real eigenfunctions.

Proof. Suppose that λ is an eigenvalue. Let X be an eigenfunction

with eigenvalue λ, so that X ′′ = −λX. Note that X
′′

= −λX. As
the boundary conditions are real, it follows that X is an eigenfunction
with eigenvalue λ.

As before this gives∫ b

a

(−X ′′X +XX
′′
) dx =

[
XX −XX

]b
a

= 0.

Now the LHS is also equal to

0 =

∫ b

a

(−X ′′X +XX
′′
) dx

=

∫ b

a

(−λXX + λXX) dx

= (λ− λ)

∫ b

a

XX dx.

But the integral cannot be zero and so λ = λ. It follows that λ is real.
Now write X = Y + iZ, where Y (x) and Z(x) are the real and

imaginary parts of X(x). Then

Y ′′ + iZ ′′ = λ(Y + iZ).

As λ is real, equating the real and imaginary parts, we must have

Y ′′ = λY and Z ′′ = λZ.

But then Y and Z are two real eigenfunctions with eigenvalue λ. �

There is also a result for negative eigenvalues
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Theorem 22.3. If the boundary conditions are symmetric and[
f ′(x)f(x)

]b
a

≤ 0

for all real functions satisfying the boundary conditions then there are
no negative eigenvalues.

There is another interesting result about eigenvalues which is much
harder to prove

Theorem 22.4. If the boundary conditions are symmetric then there
are infinitely many eigenvalues

λ1 ≤ λ2 ≤ λ3 . . .

and their limit is infinity.

It is worth spending a little bit of time talking about convergence.
There are three types of convergence.

Definition 22.5. We say that the sequence of functions f1, f2, . . . con-
verges to f on the interval (a, b)

pointwise: if given x ∈ (a, b) we have limn→∞ fn(x) = f(x).
uniformly: if given ε we can find n0 such that |fn(x)− f(x)| < ε uniformly

for all x.
L2: if

lim
n→∞

∫ b

a

(fn(x)− f(x)2 dx = 0.

The weakest type of convergence is pointwise convergence. The
strongest is uniform convergence. L2-convergence is the most inter-
esting, it says that on average the square of the distance is going to
zero.

Roughly speaking Fourier series typically converge both pointwise
and in the L2-sense but not always uniformly.

Theorem 22.6. If we have symmetric boundary conditions then the
Fourier series for f(x) converges uniformly to f(x) provided

(1) f is C2, and
(2) f satisfies the boundary conditions.

Theorem 22.7. The fourier series for f converges to f in the L2 sense
provided ∫ b

a

f 2(x) dx

is finite.
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For example the Fourier sine series

4

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+ . . .

)
for f(x) = 1 on the interval (0, 1), converges to f(x) pointwise and in
the L2 sense but not uniformly.
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