21. PARITY PERIODICITY AND COMPLEXITY

We say that a function ¢ is periodic, with period p, if

dlx+p)=¢(x)  forall z.

If ¢ is periodic, with period p, then ¢ is periodic with period np for
any positive integer n. If ¢(z) has period p then ¢(ax) has period p/a.

Note that if ¢; and ¢y are periodic with period p then a¢; also has
period p and so does ¢, and ¢s.

Finally, given a function ¢ defined on an interval of length p there is
unique extension of ¢ to the whole real line of a function with period p
(well, strictly speaking the function is not defined at the two endpoints
of the interval).

As cos and sin have period 27 it follows that cos7z/l and sin7x/l
have period 2/ and so cosnmz/l and sin nwa /1 also have period 2I. But
then the full Fourier series has period 2. Given a function ¢ on (—[,)
there is a unique function on the whole real line with period 2[, and
this is equal to the Fourier series.

Now if we start with a function ¢ on (0, ) there is a unique extension
of ¢ to an odd function on the interval (—[,[) and a unique extension
of this to a periodic function on the whole real line. This is the same
as the Fourier sine series.

On the other hand, if we start with a function ¢ on (0,[) there is a
unique extension of ¢ to an even function on the interval (—,) and a
unique extension of this to a periodic function on the whole real line.
This is the same as the Fourier cosine series.

Put differently, the Fourier sine series on (0, /) is the same as a Fourier
series on (—[,1) of an odd function. Similarly the Fourier cosine series
on (0,1) is the same as a Fourier series on (—[,[) of an odd function.

We can match this to boundary conditions. If we want to solve the
wave/diffusion equation on (0,/) with Dirichlet boundary conditions
then we want the Fourier sine series, since we want an even function.

If we want to solve the wave/diffusion equation on (0,7) with Neu-
mann boundary conditions then we want the Fourier cosine series, since
we want an even function.

If we want to solve the wave/diffusion equation on (—I,[) with peri-
odic boundary conditions then we want the Fourier series.

It is sometimes convenient to work with complex functions, rather
than real functions, when we are looking at eigenfunctions of
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on (—I,1). Recall that DeMoivre’s theorem,

e = cosf + isinb.
It follows that
i0 —i0 0 —if
cosf = e te and sinf = i
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In fact A .
ezmr;t/l and e—zmm/l

are two eigenfunctions with eigenvalue
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In fact instead of writing ¢(z) in terms of cosine and sine, instead we

can write as a sum of exponentials, with complex coefficients:
n=oo
¢(x) _ Z Cneimrz/l'
n=—00
Note that this is a double sum, the index goes from —oo to oc.
It is interesting to note that the same magic formula for integration
is still valid:
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provided n # m. If n = m then we are integrating 1 over (—[,[) and
the answer is 2[.

As before, this implies there is a simple formula for the coefficients
Cm:
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Cn = 5 /l(b(x)e_zmm/l dz.
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