20. Fourier series

We now turn to the problem of writing a function as an infinite sum of trigonometric functions.

We start with the Fourier sine series

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{l}.$$

We suppose that ϕ is defined on the interval(0, l). We would like to determine the coefficients A_1, A_2, \ldots , starting with ϕ . We assume that the RHS converges to ϕ on (0, l).

This turns out to be easy, using the following simple:

Lemma 20.1. If m and n are positive integers then

$$\int_0^l \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{l}{2} & \text{if } m = n. \end{cases}$$

Proof. We start with the identity

$$\sin \alpha \sin \beta = \frac{1}{2}\cos(\alpha - \beta) - \frac{1}{2}\cos(\alpha + \beta),$$

which is easily checked by applying the addition formula for cosine.

If we assume that $m \neq n$, it follows that

$$\int_0^l \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx = \frac{1}{2} \int_0^l \cos \frac{(n-m)\pi x}{l} - \cos \frac{(n+m)\pi x}{l} dx$$
$$= \frac{1}{2\pi} \left[\frac{1}{n-m} \sin \frac{(n-m)\pi x}{l} - \frac{1}{n+m} \sin \frac{(n+m)\pi x}{l} \right]_0^l$$
$$= 0.$$

The last line follows, as we are evaluating sine at four different integer multiples of π , where it is zero.

Now if m = n the calculation changes only in the first term:

$$\cos\frac{(n-m)\pi x}{l} = 1.$$

If we integrate this from 0 to l we get l.

We are assuming that

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{l}$$

where both sides are defined on the interval (0, l) and the sum converges there.

If we multiply both sides by

$$\sin \frac{m\pi x}{l}$$

then we get

$$\phi(x)\sin\frac{m\pi x}{l} = \sum_{n=1}^{\infty} A_n \sin\frac{n\pi x}{l} \sin\frac{m\pi x}{l}.$$

Now integrate both sides from 0 to l:

$$\int_0^l \phi(x) \sin \frac{m\pi x}{l} dx = \int_0^l \sum_{n=1}^\infty A_n \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx$$
$$= \sum_{n=1}^\infty A_n \int_0^l \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx$$
$$= A_m \frac{l}{2}.$$

Thus

$$A_m = \frac{2}{l} \int_0^l \phi(x) \sin \frac{m\pi x}{l} \, \mathrm{d}x.$$

Note that the key step is switching the order of integration and summation to get from the first line to the second line.

Example 20.2. Find the Fourier sine series for $\phi(x) = 1$.

We just need to compute

$$A_m = \frac{2}{l} \int_0^l \phi(x) \sin \frac{m\pi x}{l} dx$$
$$= \frac{2}{l} \int_0^l \sin \frac{m\pi x}{l} dx$$
$$= \frac{2}{l} \left[\frac{-l}{m\pi} \cos \frac{m\pi x}{l} \right]_0^l$$
$$= \frac{2(1 - (-1)^m)}{m\pi}.$$

It follows that

$$A_m = \begin{cases} \frac{4}{m\pi} & \text{if } m \text{ is odd} \\ 0 & \text{if } m \text{ is even.} \end{cases}$$

Hence

$$1 = \frac{4}{\pi} \left(\sin \frac{\pi x}{l} + \frac{1}{3} \sin \frac{3\pi x}{l} + \frac{1}{5} \sin \frac{5\pi x}{l} + \dots \right).$$

Example 20.3. Find the Fourier sine series for $\phi(x) = x$.

We just need to compute

$$A_m = \frac{2}{l} \int_0^l \phi(x) \sin \frac{m\pi x}{l} dx$$

$$= \frac{2}{l} \int_0^l x \sin \frac{m\pi x}{l} dx$$

$$= \left[\frac{-2x}{m\pi} \cos \frac{m\pi x}{l} + \frac{2l}{m^2\pi^2} \sin \frac{m\pi x}{l} \right]_0^l$$

$$= (-1)^{m+1} \frac{2l}{m\pi}.$$

Hence

$$x = \frac{2l}{\pi} \left(\sin \frac{\pi x}{l} - \frac{1}{2} \sin \frac{2\pi x}{l} + \frac{1}{3} \sin \frac{3\pi x}{l} + \dots \right).$$

Example 20.4. Solve the PDE

$$u_{tt} = c^2 u_{xx}$$

 $u(0,t) = u(l,t) = 0$
 $u(x,0) = x$ $u_t(x,0) = 0$.

The general solution of the PDE, subject to the boundary conditions is

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l} \right) \sin \frac{n\pi x}{l}.$$

The fact that $u_t(x, 0)$ implies that $B_n = 0$ for all n. We want to choose A_m so that

$$x = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{l}.$$

We solved this in (20.3). Using this, we get

$$u(x,t) = \frac{2l}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cos \frac{n\pi ct}{l} \sin \frac{n\pi x}{l}.$$

We now look at some variations on a theme. The first is to consider the **Fourier cosine series**

$$\phi(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{l}.$$

Once again we assume that both sides are defined on the interval (0, l) and once again we assume that the series converges.

The key result is again a simple result about integration

Lemma 20.5. If m and n are non-negative integers then

$$\int_0^l \cos \frac{n\pi x}{l} \cos \frac{m\pi x}{l} dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{l}{2} & \text{if } m = n > 0. \\ l & \text{if } m = n = 0. \end{cases}$$

As before we multiply both sides by

$$\cos \frac{m\pi x}{l}$$

and integrate over the interval (0, l).

$$\int_0^l \phi(x) \cos \frac{m\pi x}{l} dx = \int_0^l \sum_{n=1}^\infty A_n \cos \frac{n\pi x}{l} \cos \frac{m\pi x}{l} dx$$
$$= \sum_{n=1}^\infty A_n \int_0^l \cos \frac{n\pi x}{l} \cos \frac{m\pi x}{l} dx$$
$$= A_m \frac{l}{2}.$$

Thus

$$A_m = \frac{2}{l} \int_0^l \phi(x) \cos \frac{m\pi x}{l} \, \mathrm{d}x.$$

Note that this finally explains the unusual factor of 1/2 in front of $A_0/2$.

Example 20.6. Find the Fourier cosine series for $\phi(x) = 1$.

We just need to compute. If m > 0 then

$$A_m = \frac{2}{l} \int_0^l \phi(x) \cos \frac{m\pi x}{l} dx$$
$$= \frac{2}{l} \int_0^l \cos \frac{m\pi x}{l} dx$$
$$= \frac{2}{l} \left[\frac{l}{m\pi} \sin \frac{m\pi x}{l} \right]_0^l$$
$$= 0.$$

If m = 1 then in fact we get $A_0 = 2$.

It follows that

$$A_m = \begin{cases} 1 & \text{if } m = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Hence

$$1 = 1$$
.

In retrospect we could have guessed this expansion.

Example 20.7. Find the Fourier cosine series for $\phi(x) = x$.

We just need to compute

$$A_m = \frac{2}{l} \int_0^l \phi(x) \cos \frac{m\pi x}{l} dx$$

$$= \frac{2}{l} \int_0^l x \cos \frac{m\pi x}{l} dx$$

$$= \left[\frac{2x}{m\pi} \sin \frac{m\pi x}{l} + \frac{2l}{m^2 \pi^2} \cos \frac{m\pi x}{l} \right]_0^l$$

$$= \frac{2l}{m\pi} ((-1)^m - 1).$$

It follows that

$$A_m = \begin{cases} \frac{-4l}{m^2\pi^2} & \text{if } m \text{ is odd} \\ 0 & \text{otherwise.} \end{cases}$$

Hence

$$x = \frac{l}{2} - \frac{4l}{\pi^2} \left(\cos \frac{\pi x}{l} + \frac{1}{9} \cos \frac{3\pi x}{l} + \frac{1}{25} \cos \frac{5\pi x}{l} + \dots \right).$$

The final possibility is to consider the **full Fourier series** on the interval (-l, l).

$$\phi(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi x}{l} + B_n \sin \frac{n\pi x}{l} \right).$$

Once again there are similar identities

$$\int_{-l}^{l} \cos \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx = 0$$

$$\int_{-l}^{l} \cos \frac{n\pi x}{l} \cos \frac{m\pi x}{l} dx = 0 \quad \text{provided} \quad m \neq n$$

$$\int_{-l}^{l} \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx = 0 \quad \text{provided} \quad m \neq n.$$

We also have

$$\int_{-l}^{l} \cos^2 \frac{n\pi x}{l} dx = l$$

$$\int_{-l}^{l} \sin^2 \frac{n\pi x}{l} dx = l$$

$$\int_{-l}^{l} 1^2 dx = 2l.$$

It follows that

$$A_m = \frac{1}{l} \int_{-l}^{l} \phi(x) \cos \frac{m\pi x}{l} dx$$
$$B_m = \frac{1}{l} \int_{-l}^{l} \phi(x) \sin \frac{m\pi x}{l} dx.$$

Example 20.8. Find the Fourier series for $\phi(x) = x$.

We just need to compute

$$A_m = \frac{1}{l} \int_{-l}^{l} \phi(x) \cos \frac{m\pi x}{l} dx$$

$$= \frac{1}{l} \int_{-l}^{l} x \cos \frac{m\pi x}{l} dx$$

$$= \left[\frac{x}{m\pi} \sin \frac{m\pi x}{l} + \frac{l}{m^2 \pi^2} \cos \frac{m\pi x}{l} \right]_{-l}^{l}$$

$$= 0$$

On the other hand

$$B_m = \frac{1}{l} \int_{-l}^{l} \phi(x) \sin \frac{m\pi x}{l} dx$$

$$= \frac{1}{l} \int_{-l}^{l} x \sin \frac{m\pi x}{l} dx$$

$$= \left[\frac{-x}{m\pi} \cos \frac{m\pi x}{l} + \frac{l}{m^2 \pi^2} \sin \frac{m\pi x}{l} \right]_{-l}^{l}$$

$$= (-1)^{m+1} \frac{2l}{m\pi}.$$

This gives us exactly the same series

$$x = \frac{2l}{\pi} \left(\sin \frac{\pi x}{l} - \frac{1}{2} \sin \frac{2\pi x}{l} + \frac{1}{3} \sin \frac{3\pi x}{l} + \dots \right).$$

as in (20.3).

In fact we could have guessed this, using the fact that $\phi(x)=x$ is an odd function.