
14. Reflections of waves

Now we look at the same problem for the wave equation. Consider
the Dirichlet boundary problem

vtt = c2vxx for 0 < x <∞, 0 < t <∞
v(x, 0) = φ(x) vt(x, 0) = ψ(x) for t = 0

v(0, t) = 0 for x = 0.

We employ the same trick as before. Let φodd and ψodd be the odd
extensions of φ and ψ to the whole real line. Let u(x, t) be the solution
to the wave equation on the whole real line and let v be the restriction
of u to positive values of x.

As before, v has the same derivatives as u on the positive real axis,
so that it is a solution to the wave equation and v(0, t) = 0 as u is odd.

If we apply d’Alembert’s formula then we get

v(x, t) =
1

2
(φodd(x+ ct) + φodd(x− ct)) +

1

2c

∫ x+ct

x−ct

ψodd(y) dy.

We now turn this into a formula involving φ and ψ. There are two
possibilities, depending on the sign of x − ct. If x > c|t| then both
x+ ct and x− ct are positive and so

v(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct

ψ(y) dy,

the usual formula. But now suppose that x < c|t|. Then x − ct is
negative so that

φodd(x− ct) = −φ(ct− x).

Thus

v(x, t) =
1

2
(φ(x+ ct)− φ(ct− x))+

1

2c

∫ x+ct

0

ψ(y) dy+
1

2c

∫ 0

x−ct

−ψ(−y) dy,

If we replace y by −y in the second integral then we get

v(x, t) =
1

2
(φ(x+ ct)− φ(ct− x)) +

1

2c

∫ x+ct

ct−x

ψ(y) dy,

valid when x < c|t|.
We now try to do the same thing for a finite interval. Consider the

Dirichlet boundary problem

vtt = c2vxx for 0 < x < l, 0 < t <∞
v(x, 0) = φ(x) vt(x, 0) = ψ(x) for t = 0

v(0, t) = v(l, t) = 0 for x = 0, l.
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We employ the same trick as before. Let φext and ψext be the odd
extensions of φ and ψ to the whole real line. More precisely, we want

φext(−x) = −φext(x) and φext(2l − x) = −φext(x).

In other words, we want symmetry about the two points x = 0 and
x = l. We let

φext(x) =

{
φ(x) if 0 < x < l

−φ(−x) if −l < x < 0

and we then extend to make φext periodic with period 2l, that is,

φext(x+ 2l) = φext(x).

Let u(x, t) be the solution to the wave equation on the whole real
line with initial conditions φext and ψext and let v be the restriction of
u to positive values of x.

As before, v has the same derivatives as u on the positive real axis,
so that it is a solution to the wave equation and v(0, t) = v(l, t) = 0.

If we apply d’Alembert’s formula then we get

v(x, t) =
1

2
(φext(x+ ct) + φext(x− ct)) +

1

2c

∫ x+ct

x−ct

ψext(y) dy.

We now turn this into a formula involving φ and ψ. This formula
depends heavily on the number of reflections involved. We have two
waves, one traveling to the left, one traveling to the right. These waves
can reflect off both sides, x = 0 and x = l.

For example, suppose that −2l < x− ct < l and 2l < x+ ct < 3l, so
that the wave traveling left reflects three times and the wave traveling
right reflects twice. Every time we reflect there is a change in sign.
So the wave traveling left comes with a negative sign and the wave
traveling right comes with a positive sign.

We get

φext(x+ ct) = −φ(4l−x− ct) and φext(x− ct) = φ(x− ct+2l).

There are similar formulae for ψext. We get

v(x, t) =
1

2
(φ(x− ct+ 2l)− φ(4l − x− ct))+ 1

2c

(∫ −l

x−ct

ψ(y + 2l) dy +

∫ 0

−l

−ψ(−y) dy

+

∫ l

0

ψ(y) dy +

∫ 2l

l

−ψ(−y + 2l) dy +

∫ 3l

2l

ψ(y − 2l) dy +

∫ x+ct

3l

−ψ(−y + 4l) dy

)
.

If we make the change of variables y −→ −y and y− 2l −→ −y+ 2l
then we see that the second and third integral and the fourth and fifth
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integrals cancel. Thus the formula reduces to

v(x, t) =
1

2
(φ(x− ct+ 2l)− φ(4l − x− ct)) +

1

2c

∫ 4l−x−ct

x−ct+2l

ψ(y) dy.

There are similar formulae depending on where x+ct and x−ct land
in the intervals [il, (i+ 1)l] of length l.

It is clear that even if these formulae are correct something is missing
from this whole picture.
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