
11. The diffusion equation on the line

Our goal is to solve as explicitly as possible the diffusion equation
on the whole line

ut = kuxx for −∞ < x <∞, 0 < t <∞,
with the initial condition

u(x, 0) = φ(x).

The method of solution is quite different to previous methods. We
start with a particular choice of φ(x), solve for this and induce all of
the other solutions for different choices of φ(x) from this one solution.

We start with five different ways to go from one solution to the
diffusion equation to more solutions (ignoring the initial condition).

(a) The translate u(x− y, t) of a solution u(x, t) is another solution.
(b) Any derivative of a solution is a solution (derivative with respect

to either x or t).
(c) A linear combination of solutions is a solution (by linearity).
(d) An integral of solutions is a solution. If S(x, t) is a solution of

the diffusion equation then so is S(x− y, t) and so is

v(x, t) =

∫ ∞
−∞

S(x− y)g(y) dy

for any function g(y) (provided the integral converges).
(e) If u(x, t) is any solution to the diffusion equation then so is the

dilated function
v(x, t) = u(

√
ax, at)

for any a > 0.
Note that (d) is really a limiting form of (c). To check (e) we simply

apply the chain rule

vt =
∂(at)

∂t
ut

= aut.

Similarly

vx =
∂(
√
at)

∂x
ux

=
√
aux,

so that

vxx =
√
a
√
auxx

= auxx.
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We now write down a particular choice of φ(x).

Definition 11.1 (Heaviside step function). The Heaviside step func-
tion is defined as

H(x) =

{
1 for x > 0

0 for x < 0.

Note that the Heaviside step function does not change under dilation.
We are looking for a solution Q(x, t) to the diffusion equation with

the initial data of the Heaviside step function,

Q(x, 0) = 1 for x > 0 Q(x, 0) = 0 for x < 0.

There are three steps.
Step 1 We assume that Q(x, t) has a very special form

Q(x, t) = g(p) where p =
x√
4kt

.

Why would we jump to this assumption? Well, there are two obser-
vations. A dilation of Q(x, t) is still a solution to the wave equation
and H(x, t) is unchanged under dilations. It follows that any dila-
tion of Q(x, t) is a solution to the same PDE with the same auxiliary
conditions. By uniqueness it follows that Q(x, t) is unchanged under
dilations.

Note that x/
√
t is unchanged under dilations and in fact Q(x, t)

must be a function of x/
√
t. It is convenient to rescale and write Q as

a function of p.
Step 2 We now figure out the ODE which g has to satisfy. If we

apply the chain rule then we get

Qt =
dg

dp

∂p

∂t
= − 1

2t

x√
4kt

g′(p)

Qx =
dg

dp

∂p

∂x
=

1√
4kt

g′(p)

Qxx =
dQx

dp

∂p

∂x
=

1

4kt
g′′(p)

0 = Qt − kQxx = − 1

2t

(
pg′(p) +

1

2
g′′(p)

)
.

Putting all of this together we get

g′′ + 2pg′ = 0.

This gives us an integrating factor of

exp(

∫
2p dp) = exp(p2).
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This gives

g′(p) = c1 exp(−p2)

so that

Q(x, t) = g(p) = c1

∫ x√
4kt

0

e−p
2

dp+ c2.

Step 3 Now we turn this expression into an explicit formula. If t
tends to zero from above then the upper limit increases in magnitude.
If x > 0 then the upper limit approaches∞ and Q approaches 1 and if
x < 0 then the upper limit approaches −∞ and Q approaches 0. Thus

1 = c1

∫ ∞
0

e−p
2

dp+ c2 = c1

√
π

2
+ c2

and

0 = c1

∫ −∞
0

e−p
2

dp+ c2 = −c1
√
π

2
+ c2.

Thus

c1 =
1√
π

and c2 =
1

2
.

It follows that

Q(x, t) =
1

2
+

1√
π

∫ x√
4kt

0

e−p
2

dp.

Step 4 Now we know Q we put S = Qx. Then S is also a solution
of the diffusion equation, by (b). Given φ, we define

u(x, t) =

∫ ∞
−∞

S(x− y, t)φ(y) dy for t > 0.

Then u is a solution of the diffusion equation by (d).
We have

u(x, t) =

∫ ∞
−∞

Qx(x− y, t)φ(y) dy

= −
∫ ∞
−∞

Qy(x− y, t)φ(y) dy

=

[
−Q(x− y)φ(y)

]∞
−∞

+

∫ ∞
−∞

Q(x− y, t)φ′(y) dy.
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We assume that the first term is zero; in fact we assume that φ(y) is
zero for y large. It follows that

u(x, 0) =

∫ ∞
−∞

Q(x− y, 0)φ′(y) dy

=

∫ ∞
−∞

H(x− y)φ′(y) dy

=

∫ x

−∞
φ′(y) dy

=

[
φ(y)

]x
−∞

= φ(x).

Thus u(x, t) is indeed a solution to the diffusion equation and u(x, 0) =
φ(x).

Now

S = Qx =
1

2
√
πkt

e−x
2/4kt for t > 0.

Thus

u(x, t) =
1

2
√
πkt

∫ ∞
−∞

e−(x−y)
2/4ktφ(y) dy.

is a solution of the diffusion equation, with initial condition φ(x). This
is the analogue of d’Alembert’s solution of the wave equation.

This gives the solution for t > 0. The formula does not make sense
if t = 0.

The functions S(x, t) has many different names: the source func-
tion, Green’s function, fundamental solution, Gaussian, prop-
agator, diffusion kernel.
S(x, t) is defined for all x and for t > 0 and it is even, that is,

S(−x, t) = S(x, t).

If t is small then the graph looks like a spike, concentrated at the origin
(a delta function), as t increases the graph resembles the familiar Gauss
bell curve and if t is very large the graph looks almost flat.

Note that ∫ ∞
−∞

S(x, t) dx =
1√
π

∫ ∞
−∞

e−q
2

dq

= 1,

where

q =
x√
4kt

so that dq =
dx√
4kt

.
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If one looks at the graph of S(x, t) for t small then notice if we cut
out the tall thin spike then the rest of the function is close to zero:

max
|t|>δ

S(x, t)→ 0 as t→ 0.

One can think of the solution above as a weighted average of contri-
butions from corresponding to the initial value. In fact the integral is
approximated by a Riemann sum∑

i

S(x− yi, t)φ(yi)∆yi.

This is the average of the solutions S(x−yi, t) with weights φ(yi). When
t is small S(x−yi, t) is a spike concentrated over yi and so the Riemann
sum gives more weight to points yi close to x and as t increases the
weights even out.

The physical explanation of this is that S(x − y, t) represents one
unit (a gram say) of substance concentrated at time t = 0 at the point
y. As time progresses this substance diffuses, or spreads out. The term

S(x− yi, t)φ(yi)∆yi

reprents the diffusion of φ(yi)∆yi units of substance distributed over
a small interval of width ∆yi centred around yi. There is a similar
picture for heat, S(x− y, t) represents a hot spot centred at y at time
t = 0 which spreads out as time progresses.

It is rare that one can use the integral to give explicit formulae for
concrete choices of φ(x). However it is not uncommon that one can
express the answer in terms of the error function

E rf(x) =
2√
π

∫ x

0

e−p
2

dp.

Note that

E rf(0) = 0 and lim
x→∞

E rf(x) = 1.

For example,

Q(x, t) =
1

2
+

1

2
E rf

(
x√
4kt

)
.

Example 11.2. Solve the diffusion equation with the initial condition

u(x, 0) = e−x.

We use the formula

u(x, t) =
1

2
√
πkt

∫ ∞
−∞

e−(x−y)
2/4kte−y dy.
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Consider the exponent of e:

−x
2 − 2xy + y2 + 4kty

4kt
.

We complete the square in y:

−(y + 2kt− x)2

4kt
+ kt− x.

Let

p =
y + 2kt− x√

4kt
so that dp =

dy√
4kt

.

It follows that

u(x, t) =
1√
π
ekt−x

∫ ∞
−∞

e−p
2

dp

= ekt−x.

Note that this solution grows rather than decays in time. This does
not contradict the maximum principle, as the temperature of the left
hand side of the rod is very hot, that is,

lim
x→−∞

u(x, 0) =∞.
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