
10. The diffusion equation

We now turn our attention to the diffusion equation, so that we
move from the study of hyperbolic equations to the study of parabolic
equations. Recall that the one dimensional diffusion equation reads

ut = kuxx.

Of course the study of diffusion is very different from the study of
waves.

It will turn out that writing down an explicit form of the solution
to the diffusion equation is harder than for waves. In this section we
focus on a useful property of solutions to the diffusion equation.

Theorem 10.1 (Maximum principle). Suppose that u(x, t) is a solu-
tion to the diffusion equation in the rectangle 0 ≤ x ≤ l, 0 ≤ t ≤ T .

If the maximum value of u(x, t) is achieved at a point which is neither
an initial point, t = 0, 0 ≤ x ≤ l nor a lateral point, x = 0 or x = l,
0 ≤ t ≤ T , then u is constant.

This is the strong form of the maximum principle. Note that as u is
continuous, it has a maximum somewhere in the rectangle. The strong
form says that if u is not constant this maximum is never strictly inside
the rectangle nor on the upper edge t = T and 0 < x < wl. The weak
form simply says that the maximum is achieved on the sides or at the
start, it does not preclude the possibility that the maximum is also
achieved inside the rectangle or at the end.

There is also a companion minimum principle. The strong form says
that the minimum is never achieved strictly inside the rectangle nor at
the end, unless u is constant. The reader can formulate for themselves
the weak form of the minimum principle.

In fact the minimum principle follows easily from the maximum prin-
ciple applied to v = −u. As the diffusion equation is linear, v is also a
solution to the diffusion equation. A minimum for u is a maximum for
v and u is constant if and only if v is constant.

Finally note that the maximum principle make physical sense. If
you have a metal rod then the maximum and minimum temperature
occur either at the start or at the two endpoints (by assumption there
is no heat source). If you have a cylinder of liquid and a red dye then
either there is the most dye at the start or at one of the two ends of
the cylinder.

Proof of (10.1). We only prove the weak form of the maximum princi-
ple.
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The idea is to use the standard fact from calculus that on the interior
of the rectangle a maximum is at a critical point, a point where the
partial derivatives are all zero, and at maximum we also have uxx ≤ 0.

If we knew that uxx < 0, that is, if we knew that uxx 6= 0, then we
would have

0 = ut

= kuxx

< 0,

which is surely not possible. We introduce a trick to deal with the
possibility that uxx = 0 at the maximum.

Let M be the maximum of u(x, t) on the three sides, the initial side
and the two lateral sides. Pick a positive constant ε > 0 and let

v(x, t) = u(x, t) + εx2.

Claim 10.2. v(x, t) ≤M + εl2 on the rectangle.

Let’s assume (10.2). We would have

u(x, t) = v(x, t)− εx2

≤M + ε(l2 − x2).
Letting ε go to zero we get that u(x, t) ≤M .

We now turn to the proof of the claim:

Proof of (10.2). Note that

v(x, t) ≤M + εl2

on the three sides t = 0, x = 0 and x = l.
Note that

vt − kvxx = ut − kuxx − 2kε

= −2kε

< 0.

If (x0, t0) is a maximum of v(x, t) in the interior of R so that

0 < t0 < T and 0 < x0 < l

then we would have

vt = 0 and vxx < 0,

at (x0, t0). In this case

vt − kvxx = 0− kvxx
> 0,
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which is not possible.
Finally suppose that there were a maximum at the end (x0, t0), along

the line t = T and 0 < x0 < l. In this case t0 = T , vx(x0, T ) = 0 and
vxx(x0, T ) ≤ 0.

On the other hand, as v(x0, T ) is bigger than v(x0, T − δ) we have

vt(x0, t0) = lim
v(x0, T )− v(x0, T − δ)

δ
≥ 0,

as δ approaches zero from above. We again get a contradiction to the
inequality we established above.

But v must have a maximum somewhere on the rectangle R. By a
process of elimination it must be on one of the two lateral sides or at
the start. But then v(x, t) ≤M + εl2. �

�

One can use the maximum principle to prove that solutions to the
diffusion equation with Dirichlet boundary conditions are unique:

There is at most one solution to

ut − kuxx = f(x, t) for 0 < x < l and t > 0

u(x, 0) = φ(x)

u(0, t) = g(t)

u(l, t) = h(t),

where f , φ, g and h are four given functions.
Suppose that u1 and u2 are two solutions to the diffusion equation

with auxiliary conditions above. Let w = u1 − u2 be their difference.
By linearity we have that

wt − kwxx = 0 for 0 < x < l and t > 0

w(x, 0) = 0

w(0, t) = 0

w(l, t) = 0.

By the maximum principle, the function w(x, t) has it maximum on
one of three sides, the start or the lateral sides. As w is zero on the
sides, this maximum is zero. But then

w(x, t) ≤ 0.

By the minimum principle, the function w(x, t) has it minimum on the
three sides, the start or the lateral sides. As w is zero on the sides, this
minimum is zero. But then

w(x, t) ≥ 0.
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As w is bounded from below and above by zero, it follows that w = 0.
But then u1 = u2.

Aliter: We give a completely different way to show uniqueness,
using the energy method.

As before we consider the difference w = u1−u2. As before w satisfies
the diffusion equation with all auxiliary conditions zero. We multiply
the diffusion equation by w

0 = 0 · w
= (wt − kwxx)w

= wtw − kwxxw

=
1

2
(w2)t − (kwxw)x + kw2

x.

If we integrate over the interval 0 < x < l then we get∫ l

0

1

2
(w2)t dx−

[
kwxw

]l
0

+

∫ l

0

kw2
x dx.

The middle term is zero, because of the boundary conditions and so
we get

d

dt

∫ l

0

1

2
w2 dx = −

∫ l

0

kw2
x dx ≤ 0.

Thus the integral is decreasing and so∫ l

0

w2(x, t) dx ≤
∫ l

0

w2(x, 0) dx.

The last integral is zero, as w(x, 0) = 0. As the integral of a square is
non-negative, it follows that∫ l

0

w2(x, t) dx = 0.

The only way that this is possible is if

w = 0,

so that u1 = u2.
We can also use these methods to derive stability results.
We first use the energy method. Suppose that h = g = f = 0 and

suppose

u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x).
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It follows that w = u1−u2 is the solution with initial data φ1(x)−φ2(x).
As above, this implies∫ l

0

(u1(x, t)− u2(x, t))2 dx ≤
∫ l

0

(φ1(x, t)− φ2(x, t))
2 dx.

It follows that if φ1 is close to φ2 in the sense that the integral on
the RHS is small then u1 is close to u2 in the sense that the integral
on the LHS is small.

If we try to use the maximum principle we get a different notion of
being close. If we try to apply the maximum principle the first thing to
note is that w = u1 − u2 = 0 on the two lateral sides and w = φ1 − φ2

at the start. Thus the maximum on the three sides is achieved at the
start and so by the maximum principle

u1(x, t)− u2(x, t) ≤ max |φ1 − φ2|.
The minimum principle says that

u1(x, t)− u2(x, t) ≥ −max |φ1 − φ2|.
Putting these both together

max
0≤x≤l

|u1(x, t)− u2(x, t)| ≤ max
0≤x≤l

|φ1(x)− φ2(x)|.
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