
MODEL ANSWERS TO THE NINTH HOMEWORK

6.11.6. We apply partial summation to

λn = n cn = f(n) and
1

g(x)
.

We get

∑
n≤x

f(x)

g(x)
=

∑
n≤x f(n)

g(x)
+

∫ x

1

g′(t)
∑

n≤t f(n)

g(t)2
dt.

As ∑
n≤x

f(n) ∼ xg(x)

we have ∫ x

1

g′(t)
∑

n≤t f(n)

g(t)2
dt =

∫ x

1

tg′(t) + o(tg′(t))

g(t)
dt

=

∫ x

1

o(g(t))

g(t)
dt

=

∫ x

1

o(1) dt

= o(x).

Hence ∑
n≤x

f(x)

g(x)
= x+ o(x),

so that ∑
n≤x

f(x)

g(x)
∼ x.

6.11.7. Since τ(mn) = τ(m)τ(n) if m and n are coprime, we may
assume that m = pe and n = pf are powers of the same prime p. In
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this case

τ(m)τ(n) = τ(pe)τ(pf )

= (1 + e)(1 + f)

= 1 + e+ f + ef

≥ 1 + ef

= τ(pe+f )

= τ(mn).

We have∑
n≤x

τ 2(n) =
∑
n≤x

τ(n)
∑
d|n

1

=
∑

d1d2≤x

τ(d1d2)

≤
∑
d2≤x

∑
d1≤x/d2

τ(d1)τ(d2)

=
∑
d2≤x

τ(d2)
∑

d1≤x/d2

τ(d1)

=
∑
d≤x

τ(d)(x/d log(x/d) +O(x/d))

= x log x
∑
d≤x

τ(d)

d
(1 +O

(
1

log x

)
)

= 1/2x log x(log2 x+O(log x)(1 +O

(
1

log x

)
)

= 1/2x log3 x

(
1 +O

(
1

log x

))2

Thus ∑
n≤x

τ 2(n)� x log3 x.

6.11.10. The number of lattice points is∑
|x|≤
√
n

∑
|y|≤
√
n−x2

1 = 2
∑
|x|≤
√
n

x
√
n− x2y

= 4
∑

0≤x≤
√
n

√
n− x2 +O(

√
n).
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To estimate the last sum we use Riemann sums:∑
0<x≤

√
n

√
n− x2 ≤

∫ n

0

√
n− t2 dt ≤

∑
0≤x<

√
n

√
n− x2.

As ∫ n

0

√
n− t2 dt = πn

and the difference between the upper and low sum is bounded by
√
n,

the number of lattice points inside the circle x2 + y2 ≤ n is

πn+O(
√
n).

Here is a more geometric argument. For each lattice point p in the
circle x2 + y2 ≤ n imagine placing a unit square with vertices at the
lattice points such that p is the southwest corner. The area covered is
the number of lattice points in the circle. The circle x2+y2 = (

√
n+2)2

completely covers the squares we put down and the circle x2 + y2 =
(
√
n − 2)2 is completely contained in the squares we put down. The

difference in the areas of these two circles is

π(
√
n+ 2)2 − π(

√
n− 2)2 = π(n+ 4

√
n+ 4− n− 4

√
n+ 4)

= O(
√
n),

and of course the area of the circle x2 + y2 = n is πn.
6.11.13. (a) We have

m∑
a=1

ar
∑

d|a,d|m

µ(d) =
m∑
a=1

ar
∑

d|(a,m)

µ(d)

=
m∑
a=1

arM((a,m))

=
m∑

a=1,(a,m)=1

ar

= Fr(m).

(b) We first approximate the sum of the rth powers of the first n natural
numbers. We use the Euler-MacLaurin formula with f(x) = xr and
m = 0. We have

n∑
k=0

kr =

∫ n

0

xr dx+
1

2
nr +

∫ n

0

rxr−1η(x) dx

=
nr+1

r + 1
+O(nr).
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We have

Fr(m) =
m∑
a=1

ar
∑

d|a,d|m

µ(d)

=
∑

d1d2≤m
d2|m

µ(d2)(d1d2)
r

=
∑
d2|m

∑
d1≤m/d2

µ(d2)d
r
1d

r
2

=
∑
d2|m

µ(d2)d
r
2

∑
d1≤m/d2

dr1

=
∑
d|m

µ(d)dr1

(
(m/d)r+1

r + 1
+O((m/d)r)

)

= mr
∑
d|m

µ(d)

(
m

(r + 1)d
+O(

1

d
)

)

=
mrϕ(m)

r + 1
+O(mrτ(m)).

6.12.1. Recall that

t

1 + t
< log(1 + t) < t for t > −1.

and t 6= 0. It follows that

a log

(
1− 1

p

)
>
−a

p

1− 1
p

=
p

p− 1

(
−a
p

)
> −a

p

> log

(
1− a

p

)
,

for p > a. Taking the exponential of both sides gives(
1− a

p

)
<

(
1− 1

p

)a

.
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Thus ∏
a<p<x

(
1− a

p

)
<
∏

a<p<x

(
1− 1

p

)a

�
∏
p<x

(
1− 1

p

)a

� log−a x.

6.12.2. Our goal is to prove that

π(x)� Q(x) where Q(x) =
x log log x

log x
.

Pick an integer y ≤
√
x and let

R =
∏
p≤y

p.

Let A(x, y) be the number of natural numbers up to x coprime to R.
Let r = π(y). Then

π(x) ≤ r + A(x, y).

By inclusion-exclusion, we have

A(x, y) = S0 − S1 + S2 + . . .

where Si is the number of integers divisible by at least i factors of R.
We claim that

A(x, y) ≤ S0 − S1 + · · ·+ S2k,

for any even index 0 < 2k ≤ π(y). Pick n ≤ x and suppose that n is
divisible by m factors of R. Then the contribution of n to the RHS is

C(n) = 1−
(
m

1

)
+

(
m

2

)
− · · ·+

(
m

2k

)
.

If m = 0 then n is counted once on the LHS and once on the RHS,
which is correct. If m > 0 then we just need to check that C(n) ≥ 0,
which was checked in the proof of Brun’s theorem.
We have

Sl =
∑

d=p1p2...pl|R

x
x

d
y.

As before we estimate this by removing the round downs. If we remove
the round downs we introduce an error of order at most∑

l≤2k

(
r

l

)
≤ 2r.
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If we multiply out ∏
p≤y

(
1− 1

p

)
then we get

R0 −R1 +R2 + . . .

where

Rl =
∑

d=p1p2...pl|R

1

d
.

Putting all of this together, we get

A(x, y) ≤ r + 2k + x
∏
p≤y

(
1− 1

p

)
+ xVk,

where

Vk = −R2k+1 +R2k+2 + . . . .

Now

Rl ≤
1

l!

(∑
p≤y

1

p

)l

.

Therefore

|vk| <
∑

2k<l≤r

1

l!

(∑
p≤y

1

p

)l

∑
l>2k

1

l!
(log log y + c)l,

for some constant c > 0. As

l! >

(
l

e

)l

,

we have

|Vk| <
∑
l>2k

(
e log log y + ec

l

)l

.

If we choose

k = x3 log log yy

then

k > e log log y + ec,
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for y large and in this case

|Vk| <
∑
l>2k

2−l

= 2−2k

< 2−6 log log y

<
1

log4 y
.

On the other hand, ∏
p≤y

(
1− 1

p

)
� 1

log y
.

Therefore

π(x)� π(y) + 23 log log y +
x

log y
+

x

log4 y

� y

log log y
+ log2 y +

x

log y

� y

log log y
+

x

log y

If we take
y = x1/ log log x.

then

π(x)� x log log x

log x
.
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