MODEL ANSWERS TO THE NINTH HOMEWORK

6.11.6. We apply partial summation to

A =1 cn = f(n) and ﬁ
We get
fl@) Y f0) 7 ()2 f(0)
25~ o) 1 Bt
As
> f(n) ~zg(o)
we have
) 2t f(0)  [Ttg'(t) + o(tg' (1))
e
_ [Tolg(®))
_/1 OB
:/ o(1)dt
= o(x)
Hence
Z f—i =z + o(x),
so that
ok
6.11.7. Since 7(mn) = 7(m)7(n) if m and n are coprime, we may

assume that m = p® and n = p/ are powers of the same prime p. In
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this case
T(m)7(n) = 7(p°)7(p")

=(1+e)(l+f)
=l+e+ft+ef
>1+ef
=7(p*)
= 7(mn).

We have

ZTQ(n) = Z 7(n) Z 1

n<z n<z din

= Z T(dldz)

dido<z

SZZleTdQ

do<w d1<z/ds

=2 7(d) ), (@)

do<x di1<z/ds

= 7(d)(z/dlog(z/d) + O(x/d))

d<zx

1
—xlogaiz 1+O(10gx>)

1
o 2
= 1/2xlog z(log” z + O(log z)(1 + O (logw>)

2
=1/2xlog’ (1+O( ! ))
log x

ZT ) < zlog®x.

n<x

Thus

6.11.10. The number of lattice points is
DD MRS PVeral
|lz[<vn |y|<vn—z? |lz|<vn

=4 ) Vn—2>+0(Vn).
0<z<y/n
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To estimate the last sum we use Riemann sums:

Z \/n—ng/\/n—ﬁdtg Z vn — z2.
0<z<\m 0 0<z<\n

As .
/ vVn—t2dt =mn
0

and the difference between the upper and low sum is bounded by /n,
the number of lattice points inside the circle 22 + 3* < n is

™+ O(v/n).

Here is a more geometric argument. For each lattice point p in the
circle 22 + y* < n imagine placing a unit square with vertices at the
lattice points such that p is the southwest corner. The area covered is
the number of lattice points in the circle. The circle 22 +y* = (y/n+2)?
completely covers the squares we put down and the circle 22 + 3% =
(v/n — 2)? is completely contained in the squares we put down. The
difference in the areas of these two circles is

m(vn+2)? —7m(vn—2? =7m(n+4yn+4—n—4yn +4)
— o).

and of course the area of the circle 22 + y? = n is mn.
6.11.13. (a) We have

a3 ud = Y ald

a=1 dla,dlm a=1 dl(a,m)
= Z CLTM(<CL, m))
a=1

(b) We first approximate the sum of the rth powers of the first n natural
numbers. We use the Euler-MacLaurin formula with f(z) = 2" and
m = 0. We have

n n 1 n
Z k"= / " dx+=n" + / ra’n(z) de
0 2 0
k=0

nr+1

r+1

+O(n").
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We have

d2|m d1<m/ds

:Zﬂ(d2>d§ Z dy

da|m di<m/d
= St (P ofmar))
dlm

=m %“(d) ((7" —Tl)d * O(é))

mw(m)+0(
r+1

m”T(m)).
6.12.1. Recall that

t

and t # 0. It follows that

1 _a
alog|1——-) > pl
p 1—;

>log(1—g),
p

for p > a. Taking the exponential of both sides gives

(-3) (-
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Thus

a<p<x a<p<x
<]I (1 - —)
p<zx p
L log ™"
6.12.2. Our goal is to prove that
xloglog x
h =——
7(z) < Q(z) where  Q(x) og 2

Pick an integer y < /7 and let
R = H P.
P<y
Let A(x,y) be the number of natural numbers up to x coprime to R.
Let r = m(y). Then
m(z) <r+ Az, y).

By inclusion-exclusion, we have

A(l’,y) 250—51+52+...
where S; is the number of integers divisible by at least ¢ factors of R.
We claim that

A(.T},y) S So —Sl +"'+S2k7

for any even index 0 < 2k < 7(y). Pick n < x and suppose that n is
divisible by m factors of R. Then the contribution of n to the RHS is

co=1- (1) (5) -+ ()

If m = 0 then n is counted once on the LHS and once on the RHS,
which is correct. If m > 0 then we just need to check that C'(n) > 0,
which was checked in the proof of Brun’s theorem.

We have .
Sl — Z LEJ.

d=pip2..p1| R
As before we estimate this by removing the round downs. If we remove
the round downs we introduce an error of order at most

") <o
()<
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If we multiply out

Py
then we get
Ry— R+ Ro+ ...
where
Ri= > E
d=pip2..pi1|R

Putting all of this together, we get

1
Az, y) §T+2k+IH <1—5) + 2V,

Py
where
Vi = —Rogs1 + Rogyo + .. ..
Now z
mey(x2)
Py
Therefore

lug| < Z %(Z%)l

2k<i<r = \p<y

1
> lloglogy +c)’,

I>2k
I l
> (—) ,
e

eloglogy + ec !
Vi| < Z( z .

[>2k

for some constant ¢ > 0. As

we have

If we choose
k = 1L3loglogy.
then

k > eloglogy + ec,
6



for y large and in this case

|Vk| < Z 2~
1>2k
— 2—2k

< 276 loglogy
1

log*y’

1 1
H(l——) < .
P log y

p<y

<

On the other hand,

Therefore

T T
m(w) < mly) +2%l8lo8y p —— 4 ——
(z) < 7(y) logy | logly

9 x

+log”y + ——

log log y logy
Y x

loglogy + logy

If we take
y = xl/loglogw‘

then
xloglog x

m(r) <

log x



