MODEL ANSWERS TO THE NINTH HOMEWORK

6.11.6. We apply partial summation to

$$
\lambda_{n}=n \quad c_{n}=f(n) \quad \text { and } \quad \frac{1}{g(x)}
$$

We get

$$
\sum_{n \leq x} \frac{f(x)}{g(x)}=\frac{\sum_{n \leq x} f(n)}{g(x)}+\int_{1}^{x} \frac{g^{\prime}(t) \sum_{n \leq t} f(n)}{g(t)^{2}} \mathrm{~d} t
$$

As

$$
\sum_{n \leq x} f(n) \sim x g(x)
$$

we have

$$
\begin{aligned}
\int_{1}^{x} \frac{g^{\prime}(t) \sum_{n \leq t} f(n)}{g(t)^{2}} \mathrm{~d} t & =\int_{1}^{x} \frac{t g^{\prime}(t)+o\left(t g^{\prime}(t)\right)}{g(t)} \mathrm{d} t \\
& =\int_{1}^{x} \frac{o(g(t))}{g(t)} \mathrm{d} t \\
& =\int_{1}^{x} o(1) \mathrm{d} t \\
& =o(x)
\end{aligned}
$$

Hence

$$
\sum_{n \leq x} \frac{f(x)}{g(x)}=x+o(x)
$$

so that

$$
\sum_{n \leq x} \frac{f(x)}{g(x)} \sim x
$$

6.11.7. Since $\tau(m n)=\tau(m) \tau(n)$ if m and n are coprime, we may assume that $m=p^{e}$ and $n=p^{f}$ are powers of the same prime p. In
this case

$$
\begin{aligned}
\tau(m) \tau(n) & =\tau\left(p^{e}\right) \tau\left(p^{f}\right) \\
& =(1+e)(1+f) \\
& =1+e+f+e f \\
& \geq 1+e f \\
& =\tau\left(p^{e+f}\right) \\
& =\tau(m n) .
\end{aligned}
$$

We have

$$
\begin{aligned}
\sum_{n \leq x} \tau^{2}(n) & =\sum_{n \leq x} \tau(n) \sum_{d \mid n} 1 \\
& =\sum_{d_{1} d_{2} \leq x} \tau\left(d_{1} d_{2}\right) \\
& \leq \sum_{d_{2} \leq x} \sum_{d_{1} \leq x / d_{2}} \tau\left(d_{1}\right) \tau\left(d_{2}\right) \\
& =\sum_{d_{2} \leq x} \tau\left(d_{2}\right) \sum_{d_{1} \leq x / d_{2}} \tau\left(d_{1}\right) \\
& =\sum_{d \leq x} \tau(d)(x / d \log (x / d)+O(x / d)) \\
& =x \log x \sum_{d \leq x} \frac{\tau(d)}{d}\left(1+O\left(\frac{1}{\log x}\right)\right) \\
& =1 / 2 x \log x\left(\log ^{2} x+O(\log x)\left(1+O\left(\frac{1}{\log x}\right)\right)\right. \\
& =1 / 2 x \log ^{3} x\left(1+O\left(\frac{1}{\log x}\right)\right)^{2}
\end{aligned}
$$

Thus

$$
\sum_{n \leq x} \tau^{2}(n) \ll x \log ^{3} x
$$

6.11.10. The number of lattice points is

$$
\begin{aligned}
\sum_{|x| \leq \sqrt{n}} \sum_{|y| \leq \sqrt{n-x^{2}}} 1 & =2 \sum_{|x| \leq \sqrt{n}}\left\llcorner\sqrt{n-x^{2}}\right\lrcorner \\
& =4 \sum_{0 \leq x \leq \sqrt{n}} \sqrt{n-x^{2}}+O(\sqrt{n}) . \\
& 2
\end{aligned}
$$

To estimate the last sum we use Riemann sums:

$$
\sum_{0<x \leq \sqrt{n}} \sqrt{n-x^{2}} \leq \int_{0}^{n} \sqrt{n-t^{2}} \mathrm{~d} t \leq \sum_{0 \leq x<\sqrt{n}} \sqrt{n-x^{2}}
$$

As

$$
\int_{0}^{n} \sqrt{n-t^{2}} \mathrm{~d} t=\pi n
$$

and the difference between the upper and low sum is bounded by \sqrt{n}, the number of lattice points inside the circle $x^{2}+y^{2} \leq n$ is

$$
\pi n+O(\sqrt{n})
$$

Here is a more geometric argument. For each lattice point p in the circle $x^{2}+y^{2} \leq n$ imagine placing a unit square with vertices at the lattice points such that p is the southwest corner. The area covered is the number of lattice points in the circle. The circle $x^{2}+y^{2}=(\sqrt{n}+2)^{2}$ completely covers the squares we put down and the circle $x^{2}+y^{2}=$ $(\sqrt{n}-2)^{2}$ is completely contained in the squares we put down. The difference in the areas of these two circles is

$$
\begin{aligned}
\pi(\sqrt{n}+2)^{2}-\pi(\sqrt{n}-2)^{2} & =\pi(n+4 \sqrt{n}+4-n-4 \sqrt{n}+4) \\
& =O(\sqrt{n})
\end{aligned}
$$

and of course the area of the circle $x^{2}+y^{2}=n$ is πn.
6.11.13. (a) We have

$$
\begin{aligned}
\sum_{a=1}^{m} a^{r} \sum_{d|a, d| m} \mu(d) & =\sum_{a=1}^{m} a^{r} \sum_{d \mid(a, m)} \mu(d) \\
& =\sum_{a=1}^{m} a^{r} M((a, m)) \\
& =\sum_{a=1,(a, m)=1}^{m} a^{r} \\
& =F_{r}(m) .
\end{aligned}
$$

(b) We first approximate the sum of the r th powers of the first n natural numbers. We use the Euler-MacLaurin formula with $f(x)=x^{r}$ and $m=0$. We have

$$
\begin{aligned}
\sum_{k=0}^{n} k^{r} & =\int_{0}^{n} x^{r} \mathrm{~d} x+\frac{1}{2} n^{r}+\int_{0}^{n} r x^{r-1} \eta(x) \mathrm{d} x \\
& =\frac{n^{r+1}}{r+1}+O\left(n^{r}\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
F_{r}(m) & =\sum_{a=1}^{m} a^{r} \sum_{d|a, d| m} \mu(d) \\
& =\sum_{\substack{d_{1} d_{2} \leq m \\
d_{2} \mid m}} \mu\left(d_{2}\right)\left(d_{1} d_{2}\right)^{r} \\
& =\sum_{d_{2} \mid m} \sum_{d_{1} \leq m / d_{2}} \mu\left(d_{2}\right) d_{1}^{r} d_{2}^{r} \\
& =\sum_{d_{2} \mid m} \mu\left(d_{2}\right) d_{2}^{r} \sum_{d_{1} \leq m / d_{2}} d_{1}^{r} \\
& =\sum_{d \mid m} \mu(d) d_{1}^{r}\left(\frac{(m / d)^{r+1}}{r+1}+O\left((m / d)^{r}\right)\right) \\
& =m^{r} \sum_{d \mid m} \mu(d)\left(\frac{m}{(r+1) d}+O\left(\frac{1}{d}\right)\right) \\
& =\frac{m^{r} \varphi(m)}{r+1}+O\left(m^{r} \tau(m)\right) .
\end{aligned}
$$

6.12.1. Recall that

$$
\frac{t}{1+t}<\log (1+t)<t \quad \text { for } \quad t>-1
$$

and $t \neq 0$. It follows that

$$
\begin{aligned}
a \log \left(1-\frac{1}{p}\right) & >\frac{-\frac{a}{p}}{1-\frac{1}{p}} \\
& =\frac{p}{p-1}\left(-\frac{a}{p}\right) \\
& >-\frac{a}{p} \\
& >\log \left(1-\frac{a}{p}\right)
\end{aligned}
$$

for $p>a$. Taking the exponential of both sides gives

$$
\left(1-\frac{a}{p}\right)<\left(1-\frac{1}{p}\right)^{a}
$$

Thus

$$
\begin{aligned}
\prod_{a<p<x}\left(1-\frac{a}{p}\right) & <\prod_{a<p<x}\left(1-\frac{1}{p}\right)^{a} \\
& \ll \prod_{p<x}\left(1-\frac{1}{p}\right)^{a} \\
& \ll \log ^{-a} x
\end{aligned}
$$

6.12.2. Our goal is to prove that

$$
\pi(x) \ll Q(x) \quad \text { where } \quad Q(x)=\frac{x \log \log x}{\log x}
$$

Pick an integer $y \leq \sqrt{x}$ and let

$$
R=\prod_{p \leq y} p
$$

Let $A(x, y)$ be the number of natural numbers up to x coprime to R. Let $r=\pi(y)$. Then

$$
\pi(x) \leq r+A(x, y)
$$

By inclusion-exclusion, we have

$$
A(x, y)=S_{0}-S_{1}+S_{2}+\ldots
$$

where S_{i} is the number of integers divisible by at least i factors of R. We claim that

$$
A(x, y) \leq S_{0}-S_{1}+\cdots+S_{2 k}
$$

for any even index $0<2 k \leq \pi(y)$. Pick $n \leq x$ and suppose that n is divisible by m factors of R. Then the contribution of n to the RHS is

$$
C(n)=1-\binom{m}{1}+\binom{m}{2}-\cdots+\binom{m}{2 k}
$$

If $m=0$ then n is counted once on the LHS and once on the RHS, which is correct. If $m>0$ then we just need to check that $C(n) \geq 0$, which was checked in the proof of Brun's theorem.
We have

$$
S_{l}=\sum_{d=p_{1} p_{2} \ldots p_{l} \mid R}\left\llcorner\frac{x}{d}\right\lrcorner .
$$

As before we estimate this by removing the round downs. If we remove the round downs we introduce an error of order at most

$$
\sum_{l \leq 2 k}\binom{r}{l} \leq 2^{r}
$$

If we multiply out

$$
\prod_{p \leq y}\left(1-\frac{1}{p}\right)
$$

then we get

$$
R_{0}-R_{1}+R_{2}+\ldots
$$

where

$$
R_{l}=\sum_{d=p_{1} p_{2} \ldots p_{l} \mid R} \frac{1}{d}
$$

Putting all of this together, we get

$$
A(x, y) \leq r+2^{k}+x \prod_{p \leq y}\left(1-\frac{1}{p}\right)+x V_{k}
$$

where

$$
V_{k}=-R_{2 k+1}+R_{2 k+2}+\ldots
$$

Now

$$
R_{l} \leq \frac{1}{l!}\left(\sum_{p \leq y} \frac{1}{p}\right)^{l}
$$

Therefore

$$
\begin{gathered}
\left|v_{k}\right|<\sum_{2 k<l \leq r} \frac{1}{l!}\left(\sum_{p \leq y} \frac{1}{p}\right)^{l} \\
\sum_{l>2 k} \frac{1}{l!}(\log \log y+c)^{l},
\end{gathered}
$$

for some constant $c>0$. As

$$
l!>\left(\frac{l}{e}\right)^{l}
$$

we have

$$
\left|V_{k}\right|<\sum_{l>2 k}\left(\frac{e \log \log y+e c}{l}\right)^{l}
$$

If we choose

$$
k=\llcorner 3 \log \log y\lrcorner
$$

then

$$
k>e \log \log y+e c,
$$

for y large and in this case

$$
\begin{aligned}
\left|V_{k}\right| & <\sum_{l>2 k} 2^{-l} \\
& =2^{-2 k} \\
& <2^{-6 \log \log y} \\
& <\frac{1}{\log ^{4} y}
\end{aligned}
$$

On the other hand,

$$
\prod_{p \leq y}\left(1-\frac{1}{p}\right) \ll \frac{1}{\log y}
$$

Therefore

$$
\begin{aligned}
\pi(x) & \ll \pi(y)+2^{3 \log \log y}+\frac{x}{\log y}+\frac{x}{\log ^{4} y} \\
& \ll \frac{y}{\log \log y}+\log ^{2} y+\frac{x}{\log y} \\
& <\frac{y}{\log \log y}+\frac{x}{\log y}
\end{aligned}
$$

If we take

$$
y=x^{1 / \log \log x}
$$

then

$$
\pi(x) \ll \frac{x \log \log x}{\log x}
$$

