MODEL ANSWERS TO THE EIGHTH HOMEWORK

6.10.1. Let

k
ng = sz‘
i=1

be the product of the first & primes. Then
k

logng, = Zlogpi < cpy;
i=1

for some constant c¢. Hence

log log ny < log ¢ + log py,
LY L
log log ny, log pg

-1

-ofsz)
log ny,

As log pr < logny, it follows that

N
) < loglogny,

6.10.2. Note that there is a constant ¢ such that

and so

On the other hand,

m(x) < Clogf

Pick z sufficiently large so that
7(z) < /2.
and
% logx < (logz — ¢).

Rearranging the last inequality, we get

T
1’—1’1/2>C

log x
= 7(z).
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If n = Lxu = x is a natural number then the number on the LHS
counts the number of integers up to n which are coprime to n and the
number on the RHS counts the number of primes up to n. Thus if n is
sufficiently large there are always numbers coprime to n which are not
prime.
6.10.5. (a) Suppose that m and n are coprime. If we have ordered fac-
torisations my, mo, ..., mg and ny, ns, ..., n,of mand nthend, ds, ..., dg
is an ordered factorisation of mn, where d; = m;n;. Conversely if
dyi,ds, ..., dy is an ordered factorisation of mn then we can write d; =
m;n; where m; divides m and n; divides n. It follows that my, mo, ..., my
and nq,ng,...,n, are ordered factorisations of m and n.
Thus the number of ordered factorisations of mn is equal to the number
of ordered factorisations of m times the number of ordered factorisa-
tions of m, so that

Tr(mn) = 7.(m) 7k (n),
and 7 is multiplicative.
(b) If dy,ds, ..., dy are integers such that

pe = dldQ...dk,

then d; = p® is a power of p and

€ = E €;.

i=1
So we just want to count the number of ways to write e as a sum of
k ordered non-negative integers. For each e; we have at most e + 1
choices, so

m(p) < (e + 1)E.
More generally one can use stars and bars to get

T(p%) = <e Z EI 1).
(c) Let

Then f(n) is multiplicative. Thus we may assume that n = p° is a
power of a prime. In this case

e k
09 < (;—j)

As k is fixed, this goes to zero as p° goes to infinity, since in this case

either e or p goes to infinity.
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6.11.1. Since

we have

o(m) = ZZd

:Zd2

dido<n
n n/di

-y

di=1d>=1

B Xn: l_n/d_|2 + I_TL/dJ
d=1 2

5 + O(nlogn).

6.11.2. (a) We apply partial summation to

Ap=n cn =7(n) and flx) = 1

- .

We get

Z TE;Z) _ anx 7(n) " /x antt;_(n) dt.

T
n<x

Now
Z 7(n) = zlogz + (2 — 1)z 4+ O(z'/?).

n<x
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Thus
x (n ml t xl x 751/2
/ %dt: %dt+(27—1)/;dt+/ O
1 1 1

1 t2

R * “ <1
_[QIOg t]1+(27 1)[logt]l+0(/l t3/2dt>

1
=3 log?z + (2y — 1) logz + O(1).

Hence

1
= —log x + 2vlogx + O(1).

Wﬁ

(b) We apply partlal summation to

1
An =1 cn =T7(n) and flz) = gz
We get
Z T(?’L) _ Zn§x7—<n) T v Znﬁt;—(n) dt
= logn log x 1 tlog®t
Now
Z 7(n) = zlogz + (27 — 1)z + O(z'/?).
n<x
We have
z 1 x t1/2
" Lnsa T) / —dt+ 27—1)/ . dt+/ LQ)dt
1 tlog t logt 1 log™t 1 tlog”t

Now we have to estimate all three integrals. The first differs by a
constant from the logarithmic integral and we know

: T x
li(z) = log x O (10g2x> '

For the second integral we have

T vE |
/_ﬁﬁﬂ_/ &+/-—Tw
1 log”t L log?t vz logt

:m¢v+0Q%x)

X
—o(—2_).
<10g290)
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For the third integral we have
T O(t/? S|
/ i Q)dt <0 / —2dt)
1 tlog t 1 t1/2]og t
ol
log” x

Zmzaﬂ—% - —i—O( x2 )
—~ n log x log” z

6.11.4. We apply partial summation to

Hence

M=n ea=pn)  and  f(z) = -

- .

We get
Z SO(TL) — n<x / Zn<t 90
n<z n
Now
ng :——i—O(:I;logx)
n<x
Thus
/ n<t90 ) 4t — / 3 e / O(tlogt) .,
t2
~2 10 ( lo—gt dt)
™ 1
3x
= — + O(log z)
Hence

It follows that
p(n) = _x
> —=.
2 3
n<x
In particular the numbers ¢(n)/n are not uniformly distributed in the
interval [0, 1], since the limit of the average is

1

3¢
and not 1/2.



6.11.5. (a) We want to check that

1

n
dln

Since both sides are multiplicative we may assume that n = p© is a
power of a prime. In this case

1 pi(d) 1
néa=p(d)  pr o)

(b) We have

> ZZ“

n<x n<x din

1 MQ(dz)

(
 #(d) log du (d)
_ng;(d) log”“"_z ngpd

d=1 d>x




to conclude that the last two sums converge.



