MODEL ANSWERS TO THE EIGHTH HOMEWORK

6.10.1. Let

$$
n_{k}=\prod_{i=1}^{k} p_{i}
$$

be the product of the first k primes. Then

$$
\log n_{k}=\sum_{i=1}^{k} \log p_{i}<c p_{k}
$$

for some constant c. Hence

$$
\log \log n_{k}<\log c+\log p_{k}
$$

and so

$$
\frac{n_{k}}{\log \log n_{k}}=O\left(\frac{n_{k}}{\log p_{k}}\right)
$$

On the other hand,

$$
\begin{aligned}
\varphi\left(n_{k}\right) & =n_{k} \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) \\
& =O\left(\frac{n_{k}}{\log n_{k}}\right)
\end{aligned}
$$

As $\log p_{k} \ll \log n_{k}$ it follows that

$$
\varphi\left(n_{k}\right) \ll \frac{n_{k}}{\log \log n_{k}} .
$$

6.10.2. Note that there is a constant c such that

$$
\pi(x)<c \frac{x}{\log x} .
$$

Pick x sufficiently large so that

$$
\tau(x)<x^{1 / 2}
$$

and

$$
x^{1 / 2} \log x<(\log x-c) x .
$$

Rearranging the last inequality, we get

$$
\begin{aligned}
x-x^{1 / 2} & >c \frac{x}{\log x} \\
& =\pi(x) .
\end{aligned}
$$

If $n=\llcorner x\lrcorner=x$ is a natural number then the number on the LHS counts the number of integers up to n which are coprime to n and the number on the RHS counts the number of primes up to n. Thus if n is sufficiently large there are always numbers coprime to n which are not prime.
6.10.5. (a) Suppose that m and n are coprime. If we have ordered factorisations $m_{1}, m_{2}, \ldots, m_{k}$ and $n_{1}, n_{2}, \ldots, n_{k}$ of m and n then $d_{1}, d_{2}, \ldots, d_{k}$ is an ordered factorisation of $m n$, where $d_{i}=m_{i} n_{i}$. Conversely if $d_{1}, d_{2}, \ldots, d_{k}$ is an ordered factorisation of $m n$ then we can write $d_{i}=$ $m_{i} n_{i}$ where m_{i} divides m and n_{i} divides n. It follows that $m_{1}, m_{2}, \ldots, m_{k}$ and $n_{1}, n_{2}, \ldots, n_{k}$ are ordered factorisations of m and n.
Thus the number of ordered factorisations of $m n$ is equal to the number of ordered factorisations of m times the number of ordered factorisations of n, so that

$$
\tau_{k}(m n)=\tau_{k}(m) \tau_{k}(n)
$$

and τ_{k} is multiplicative.
(b) If $d_{1}, d_{2}, \ldots, d_{k}$ are integers such that

$$
p^{e}=d_{1} d_{2} \ldots d_{k}
$$

then $d_{i}=p^{e_{i}}$ is a power of p and

$$
e=\sum_{i=1}^{k} e_{i}
$$

So we just want to count the number of ways to write e as a sum of k ordered non-negative integers. For each e_{i} we have at most $e+1$ choices, so

$$
\tau_{k}\left(p^{e}\right) \leq(e+1)^{k}
$$

More generally one can use stars and bars to get

$$
\tau_{k}\left(p^{e}\right)=\binom{e+k-1}{k-1}
$$

(c) Let

$$
f(n)=\frac{\tau_{k}(n)}{n^{\delta}}
$$

Then $f(n)$ is multiplicative. Thus we may assume that $n=p^{e}$ is a power of a prime. In this case

$$
f\left(p^{e}\right) \leq \frac{(e+1)^{k}}{p^{e \delta}}
$$

As k is fixed, this goes to zero as p^{e} goes to infinity, since in this case either e or p goes to infinity.
6.11.1. Since

$$
\sigma(m)=\sum_{d \mid m} d
$$

we have

$$
\begin{aligned}
\sum_{m=1}^{n} \sigma(m) & =\sum_{m=1}^{n} \sum_{d \mid m} d \\
& =\sum_{d_{1} d_{2} \leq n} d_{2} \\
& =\sum_{d_{1}=1}^{n} \sum_{d_{2}=1}^{n / d_{1}} d_{2} \\
& =\sum_{d=1}^{n} \frac{\llcorner n / d\lrcorner^{2}+\llcorner n / d\lrcorner}{2} \\
& =\frac{1}{2} \sum_{d=1}^{n} \frac{n^{2}}{d^{2}}+O\left(\sum_{d=1}^{n} \frac{n}{d}\right) \\
& =\frac{n^{2}}{2}\left(\sum_{d=1}^{\infty} \frac{1}{d^{2}}-\sum_{d=n+1}^{\infty} \frac{1}{d^{2}}\right)+O(n \log n) \\
& =\frac{n^{2}}{2} \zeta(2)+O\left(n^{2} \sum_{d=n+1}^{\infty} \frac{1}{d^{2}}\right)+O(n \log n) \\
& =\frac{n^{2} \pi^{2}}{6}+O(n)+O(n \log n) \\
& =\frac{n^{2} \pi^{2}}{6}+O(n \log n) .
\end{aligned}
$$

6.11.2. (a) We apply partial summation to

$$
\lambda_{n}=n \quad c_{n}=\tau(n) \quad \text { and } \quad f(x)=\frac{1}{x} .
$$

We get

$$
\sum_{n \leq x} \frac{\tau(n)}{n}=\frac{\sum_{n \leq x} \tau(n)}{x}+\int_{1}^{x} \frac{\sum_{n \leq t} \tau(n)}{t^{2}} \mathrm{~d} t .
$$

Now

$$
\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+O\left(x^{1 / 2}\right)
$$

Thus

$$
\begin{aligned}
\int_{1}^{x} \frac{\sum_{n \leq t} \tau(n)}{t^{2}} \mathrm{~d} t & =\int_{1}^{x} \frac{\log t}{t} \mathrm{~d} t+(2 \gamma-1) \int_{1}^{x} \frac{1}{t} \mathrm{~d} t+\int_{1}^{x} \frac{O\left(t^{1 / 2}\right)}{t^{2}} \mathrm{~d} t \\
& =\left[\frac{1}{2} \log ^{2} t\right]_{1}^{x}+(2 \gamma-1)[\log t]_{1}^{x}+O\left(\int_{1}^{\infty} \frac{1}{t^{3 / 2}} \mathrm{~d} t\right) \\
& =\frac{1}{2} \log ^{2} x+(2 \gamma-1) \log x+O(1) .
\end{aligned}
$$

Hence

$$
\sum_{n \leq x} \frac{\tau(n)}{n}=\frac{1}{2} \log ^{2} x+2 \gamma \log x+O(1)
$$

(b) We apply partial summation to

$$
\lambda_{n}=n \quad c_{n}=\tau(n) \quad \text { and } \quad f(x)=\frac{1}{\log x}
$$

We get

$$
\sum_{n \leq x} \frac{\tau(n)}{\log n}=\frac{\sum_{n \leq x} \tau(n)}{\log x}+\int_{1}^{x} \frac{\sum_{n \leq t} \tau(n)}{t \log ^{2} t} \mathrm{~d} t
$$

Now

$$
\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+O\left(x^{1 / 2}\right)
$$

We have

$$
\int_{1}^{x} \frac{\sum_{n \leq t} \tau(n)}{t \log ^{2} t} \mathrm{~d} t=\int_{1}^{x} \frac{1}{\log t} \mathrm{~d} t+(2 \gamma-1) \int_{1}^{x} \frac{1}{\log ^{2} t} \mathrm{~d} t+\int_{1}^{x} \frac{O\left(t^{1 / 2}\right)}{t \log ^{2} t} \mathrm{~d} t
$$

Now we have to estimate all three integrals. The first differs by a constant from the logarithmic integral and we know

$$
\operatorname{li}(x)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

For the second integral we have

$$
\begin{aligned}
\int_{1}^{x} \frac{1}{\log ^{2} t} \mathrm{~d} t & =\int_{1}^{\sqrt{x}} \frac{1}{\log ^{2} t} \mathrm{~d} t+\int_{\sqrt{x}}^{x} \frac{1}{\log ^{2} t} \mathrm{~d} t \\
& =O(\sqrt{x})+O\left(\frac{x}{\log ^{2} x}\right) \\
& =O\left(\frac{x}{\log ^{2} x}\right) .
\end{aligned}
$$

For the third integral we have

$$
\begin{aligned}
\left|\int_{1}^{x} \frac{O\left(t^{1 / 2}\right)}{t \log ^{2} t} \mathrm{~d} t\right| & \leq O\left(\int_{1}^{x} \frac{1}{t^{1 / 2} \log ^{2} t} \mathrm{~d} t\right) \\
& =O\left(\frac{x}{\log ^{2} x}\right) .
\end{aligned}
$$

Hence

$$
\sum_{n \leq x} \frac{\tau(n)}{n}=x+2 \gamma \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

6.11.4. We apply partial summation to

$$
\lambda_{n}=n \quad c_{n}=\varphi(n) \quad \text { and } \quad f(x)=\frac{1}{x} .
$$

We get

$$
\sum_{n \leq x} \frac{\varphi(n)}{n}=\frac{\sum_{n \leq x} \varphi(n)}{x}+\int_{1}^{x} \frac{\sum_{n \leq t} \varphi(n)}{t^{2}} \mathrm{~d} t
$$

Now

$$
\sum_{n \leq x} \varphi(n)=\frac{3 x^{2}}{\pi^{2}}+O(x \log x)
$$

Thus

$$
\begin{aligned}
\int_{1}^{x} \frac{\sum_{n \leq t} \varphi(n)}{t^{2}} \mathrm{~d} t & =\int_{1}^{x} \frac{3}{\pi^{2}} \mathrm{~d} t+\int_{1}^{x} \frac{O(t \log t)}{t^{2}} \mathrm{~d} t \\
& =\frac{3 x}{\pi^{2}}+O\left(\int_{1}^{x} \frac{\log t}{t} \mathrm{~d} t\right) \\
& =\frac{3 x}{\pi^{2}}+O(\log x)
\end{aligned}
$$

Hence

$$
\sum_{n \leq x} \frac{\varphi(n)}{n}=\frac{6 x}{\pi^{2}}+O(\log x)
$$

It follows that

$$
\sum_{n \leq x} \frac{\varphi(n)}{n} \sim \frac{x}{\zeta(2)}>\frac{x}{2}
$$

In particular the numbers $\varphi(n) / n$ are not uniformly distributed in the interval $[0,1]$, since the limit of the average is

$$
\frac{1}{\zeta(2)}
$$

and not $1 / 2$.
6.11.5. (a) We want to check that

$$
\frac{1}{\varphi(n)}=\frac{1}{n} \sum_{d \mid n} \frac{\mu^{2}(d)}{\varphi(d)}
$$

Since both sides are multiplicative we may assume that $n=p^{e}$ is a power of a prime. In this case

$$
\begin{aligned}
\frac{1}{n} \sum_{d \mid n} \frac{\mu^{2}(d)}{\varphi(d)} & =\frac{1}{p^{e}} \sum_{i=0}^{e} \frac{\mu^{2}\left(p^{i}\right)}{\varphi\left(p^{i}\right)} \\
& =\frac{1}{p^{e}}\left(\frac{1}{\varphi(1)}+\frac{1}{\varphi(p)}\right) \\
& =\frac{1}{p^{e}}\left(1+\frac{1}{(p-1)}\right) \\
& =\frac{1}{p^{e}}\left(\frac{p}{p-1}\right) \\
& =\frac{1}{p^{e}}\left(\frac{1}{1-1 / p}\right) \\
& =\frac{1}{\varphi\left(p^{e}\right)} .
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
\sum_{n \leq x} \frac{1}{\varphi(n)} & =\sum_{n \leq x} \frac{1}{n} \sum_{d \mid n} \frac{\mu^{2}(d)}{\varphi(d)} \\
& =\sum_{d_{1} d_{2} \leq x} \frac{1}{d_{1} d_{2}} \frac{\mu^{2}\left(d_{2}\right)}{\varphi\left(d_{2}\right)} \\
& =\sum_{d_{2}=1}^{x} \frac{\mu^{2}\left(d_{2}\right)}{d_{2} \varphi\left(d_{2}\right)} \sum_{d_{1}=1}^{x / d_{2}} \frac{1}{d_{1}} \\
& =\sum_{d=1}^{x} \frac{\mu^{2}(d)}{d \varphi(d)}(\log x-\log d) \\
& =\sum_{d=1}^{\infty} \frac{\mu^{2}(d)}{d \varphi(d)} \log x-\sum_{d=1}^{x} \frac{\log d \mu^{2}(d)}{d \varphi(d)}-\sum_{d>x} \frac{\mu^{2}(d)}{d \varphi(d)} \\
& =A \log x+O(1)
\end{aligned}
$$

where we used the fact that

$$
\varphi(n) \gg \frac{n}{\log _{6}^{\log n}}
$$

to conclude that the last two sums converge.

