MODEL ANSWERS TO THE EIGHTH HOMEWORK

6.10.1. Let

$$n_k = \prod_{i=1}^k p_i$$

be the product of the first k primes. Then

$$\log n_k = \sum_{i=1}^k \log p_i < cp_k$$

for some constant c. Hence

$$\log\log n_k < \log c + \log p_k,$$

and so

$$\frac{n_k}{\log\log n_k} = O\left(\frac{n_k}{\log p_k}\right).$$

On the other hand,

$$\varphi(n_k) = n_k \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right)$$
$$= O\left(\frac{n_k}{\log n_k}\right).$$

As $\log p_k \ll \log n_k$ it follows that

$$\varphi(n_k) \ll \frac{n_k}{\log \log n_k}$$
.

6.10.2. Note that there is a constant c such that

$$\pi(x) < c \frac{x}{\log x}.$$

Pick x sufficiently large so that

$$\tau(x) < x^{1/2}.$$

and

$$x^{1/2}\log x < (\log x - c)x.$$

Rearranging the last inequality, we get

$$x - x^{1/2} > c \frac{x}{\log x}$$
$$= \pi(x).$$

If $n = \lfloor x \rfloor = x$ is a natural number then the number on the LHS counts the number of integers up to n which are coprime to n and the number on the RHS counts the number of primes up to n. Thus if n is sufficiently large there are always numbers coprime to n which are not prime.

6.10.5. (a) Suppose that m and n are coprime. If we have ordered factorisations m_1, m_2, \ldots, m_k and n_1, n_2, \ldots, n_k of m and n then d_1, d_2, \ldots, d_k is an ordered factorisation of mn, where $d_i = m_i n_i$. Conversely if d_1, d_2, \ldots, d_k is an ordered factorisation of mn then we can write $d_i = m_i n_i$ where m_i divides m and n_i divides n. It follows that m_1, m_2, \ldots, m_k and n_1, n_2, \ldots, n_k are ordered factorisations of m and n.

Thus the number of ordered factorisations of mn is equal to the number of ordered factorisations of m times the number of ordered factorisations of n, so that

$$\tau_k(mn) = \tau_k(m)\tau_k(n),$$

and τ_k is multiplicative.

(b) If d_1, d_2, \ldots, d_k are integers such that

$$p^e = d_1 d_2 \dots d_k,$$

then $d_i = p^{e_i}$ is a power of p and

$$e = \sum_{i=1}^{k} e_i.$$

So we just want to count the number of ways to write e as a sum of k ordered non-negative integers. For each e_i we have at most e+1 choices, so

$$\tau_k(p^e) \le (e+1)^k.$$

More generally one can use stars and bars to get

$$\tau_k(p^e) = \binom{e+k-1}{k-1}.$$

(c) Let

$$f(n) = \frac{\tau_k(n)}{n^{\delta}}.$$

Then f(n) is multiplicative. Thus we may assume that $n = p^e$ is a power of a prime. In this case

$$f(p^e) \le \frac{(e+1)^k}{p^{e\delta}}.$$

As k is fixed, this goes to zero as p^e goes to infinity, since in this case either e or p goes to infinity.

6.11.1. Since

$$\sigma(m) = \sum_{d|m} d$$

we have

$$\sum_{m=1}^{n} \sigma(m) = \sum_{m=1}^{n} \sum_{d|m} d$$

$$= \sum_{d_1 d_2 \le n} d_2$$

$$= \sum_{d_1 = 1}^{n} \sum_{d_2 = 1}^{n/d_1} d_2$$

$$= \sum_{d=1}^{n} \frac{\lfloor n/d \rfloor^2 + \lfloor n/d \rfloor}{2}$$

$$= \frac{1}{2} \sum_{d=1}^{n} \frac{n^2}{d^2} + O\left(\sum_{d=1}^{n} \frac{n}{d}\right)$$

$$= \frac{n^2}{2} \left(\sum_{d=1}^{\infty} \frac{1}{d^2} - \sum_{d=n+1}^{\infty} \frac{1}{d^2}\right) + O(n \log n)$$

$$= \frac{n^2}{2} \zeta(2) + O\left(n^2 \sum_{d=n+1}^{\infty} \frac{1}{d^2}\right) + O(n \log n)$$

$$= \frac{n^2 \pi^2}{6} + O(n) + O(n \log n)$$

$$= \frac{n^2 \pi^2}{6} + O(n \log n).$$

6.11.2. (a) We apply partial summation to

$$\lambda_n = n$$
 $c_n = \tau(n)$ and $f(x) = \frac{1}{x}$.

We get

$$\sum_{n \le x} \frac{\tau(n)}{n} = \frac{\sum_{n \le x} \tau(n)}{x} + \int_1^x \frac{\sum_{n \le t} \tau(n)}{t^2} dt.$$

Now

$$\sum_{n \le x} \tau(n) = x \log x + (2\gamma - 1)x + O(x^{1/2}).$$

Thus

$$\begin{split} \int_{1}^{x} \frac{\sum_{n \leq t} \tau(n)}{t^{2}} \, \mathrm{d}t &= \int_{1}^{x} \frac{\log t}{t} \, \mathrm{d}t + (2\gamma - 1) \int_{1}^{x} \frac{1}{t} \, \mathrm{d}t + \int_{1}^{x} \frac{O(t^{1/2})}{t^{2}} \, \mathrm{d}t \\ &= \left[\frac{1}{2} \log^{2} t \right]_{1}^{x} + (2\gamma - 1) \left[\log t \right]_{1}^{x} + O\left(\int_{1}^{\infty} \frac{1}{t^{3/2}} \, \mathrm{d}t \right) \\ &= \frac{1}{2} \log^{2} x + (2\gamma - 1) \log x + O(1). \end{split}$$

Hence

$$\sum_{n \le x} \frac{\tau(n)}{n} = \frac{1}{2} \log^2 x + 2\gamma \log x + O(1).$$

(b) We apply partial summation to

$$\lambda_n = n$$
 $c_n = \tau(n)$ and $f(x) = \frac{1}{\log x}$.

We get

$$\sum_{n \le x} \frac{\tau(n)}{\log n} = \frac{\sum_{n \le x} \tau(n)}{\log x} + \int_1^x \frac{\sum_{n \le t} \tau(n)}{t \log^2 t} dt.$$

Now

$$\sum_{n \le x} \tau(n) = x \log x + (2\gamma - 1)x + O(x^{1/2}).$$

We have

$$\int_{1}^{x} \frac{\sum_{n \leq t} \tau(n)}{t \log^{2} t} dt = \int_{1}^{x} \frac{1}{\log t} dt + (2\gamma - 1) \int_{1}^{x} \frac{1}{\log^{2} t} dt + \int_{1}^{x} \frac{O(t^{1/2})}{t \log^{2} t} dt.$$

Now we have to estimate all three integrals. The first differs by a constant from the logarithmic integral and we know

$$\operatorname{li}(x) = \frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right).$$

For the second integral we have

$$\int_{1}^{x} \frac{1}{\log^{2} t} dt = \int_{1}^{\sqrt{x}} \frac{1}{\log^{2} t} dt + \int_{\sqrt{x}}^{x} \frac{1}{\log^{2} t} dt$$
$$= O(\sqrt{x}) + O\left(\frac{x}{\log^{2} x}\right)$$
$$= O\left(\frac{x}{\log^{2} x}\right).$$

For the third integral we have

$$\left| \int_{1}^{x} \frac{O(t^{1/2})}{t \log^{2} t} dt \right| \leq O\left(\int_{1}^{x} \frac{1}{t^{1/2} \log^{2} t} dt \right)$$
$$= O\left(\frac{x}{\log^{2} x} \right).$$

Hence

$$\sum_{n \le x} \frac{\tau(n)}{n} = x + 2\gamma \frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right).$$

6.11.4. We apply partial summation to

$$\lambda_n = n$$
 $c_n = \varphi(n)$ and $f(x) = \frac{1}{x}$.

We get

$$\sum_{n \le x} \frac{\varphi(n)}{n} = \frac{\sum_{n \le x} \varphi(n)}{x} + \int_{1}^{x} \frac{\sum_{n \le t} \varphi(n)}{t^{2}} dt.$$

Now

$$\sum_{n \le x} \varphi(n) = \frac{3x^2}{\pi^2} + O(x \log x).$$

Thus

$$\int_{1}^{x} \frac{\sum_{n \le t} \varphi(n)}{t^{2}} dt = \int_{1}^{x} \frac{3}{\pi^{2}} dt + \int_{1}^{x} \frac{O(t \log t)}{t^{2}} dt$$
$$= \frac{3x}{\pi^{2}} + O\left(\int_{1}^{x} \frac{\log t}{t} dt\right)$$
$$= \frac{3x}{\pi^{2}} + O(\log x).$$

Hence

$$\sum_{n \le x} \frac{\varphi(n)}{n} = \frac{6x}{\pi^2} + O(\log x).$$

It follows that

$$\sum_{n \le x} \frac{\varphi(n)}{n} \sim \frac{x}{\zeta(2)} > \frac{x}{2}.$$

In particular the numbers $\varphi(n)/n$ are not uniformly distributed in the interval [0, 1], since the limit of the average is

$$\frac{1}{\zeta(2)}$$

and not 1/2.

6.11.5. (a) We want to check that

$$\frac{1}{\varphi(n)} = \frac{1}{n} \sum_{d|n} \frac{\mu^2(d)}{\varphi(d)}.$$

Since both sides are multiplicative we may assume that $n=p^e$ is a power of a prime. In this case

$$\frac{1}{n} \sum_{d|n} \frac{\mu^2(d)}{\varphi(d)} = \frac{1}{p^e} \sum_{i=0}^e \frac{\mu^2(p^i)}{\varphi(p^i)}$$

$$= \frac{1}{p^e} \left(\frac{1}{\varphi(1)} + \frac{1}{\varphi(p)} \right)$$

$$= \frac{1}{p^e} \left(1 + \frac{1}{(p-1)} \right)$$

$$= \frac{1}{p^e} \left(\frac{p}{p-1} \right)$$

$$= \frac{1}{p^e} \left(\frac{1}{1-1/p} \right)$$

$$= \frac{1}{\varphi(p^e)}.$$

(b) We have

$$\begin{split} \sum_{n \leq x} \frac{1}{\varphi(n)} &= \sum_{n \leq x} \frac{1}{n} \sum_{d \mid n} \frac{\mu^2(d)}{\varphi(d)} \\ &= \sum_{d_1 d_2 \leq x} \frac{1}{d_1 d_2} \frac{\mu^2(d_2)}{\varphi(d_2)} \\ &= \sum_{d_2 = 1}^x \frac{\mu^2(d_2)}{d_2 \varphi(d_2)} \sum_{d_1 = 1}^{x/d_2} \frac{1}{d_1} \\ &= \sum_{d = 1}^x \frac{\mu^2(d)}{d \varphi(d)} (\log x - \log d) \\ &= \sum_{d = 1}^\infty \frac{\mu^2(d)}{d \varphi(d)} \log x - \sum_{d = 1}^x \frac{\log d \mu^2(d)}{d \varphi(d)} - \sum_{d > x} \frac{\mu^2(d)}{d \varphi(d)} \\ &= A \log x + O(1), \end{split}$$

where we used the fact that

$$\varphi(n) \gg \frac{n}{\log \log n},$$

to conclude that the last two sums converge.