
MODEL ANSWERS TO THE SEVENTH HOMEWORK

6.8.4 (a) We know by Euler’s theorem that

ah ≡ 1 mod k.

As χ is completely multiplicative, we have

1 = χ(ah)

= χ(a)h.

Thus χ(a) is an hth root of unity.
(b) Note that

32 ≡ 1, 52 ≡ 1 and 72 ≡ 1 mod 8.

Thus the image of 3, 5 and 7 under a character is ±1. On the other
hand,

3 · 5 ≡ 7 mod 8.

Thus if we assign ±1 to 3 and 5 then the value of 7 is determined
by multiplicativity. The four functions listed list all possible ways to
assign ±1 to 3 and 5. Thus there are at most four characters. On the
other hand, it is not hard to check that these functions are completely
multiplicative.
It is also not hard to check that the product of two characters is a char-
acter. Associativity is clear. χ0 plays the role of 1 and each character
is its own inverse. Thus we do have a group.
(c) Since

|χi(a)| = 1,

it follows that

∞∑
n=1

χi(n)

ns

converges absolutely for s > 1.
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By (9.3)

L(s, χ0) =
∏
p:odd

(
1− 1

ps

)−1
(

1− 1

2s

)∏
p

(
1− 1

ps

)−1
(

1− 1

2s

)
ζ(s).

It follows that

lim
s→1+

(s− 1)L(s, χ0) = lim
s→1+

(
1− 1

2s

)
lim
s→1+

ζ(s)

= 1/2 · 1
= 1/2.

Thus

L(s, χ0) ∼
1

2
(s− 1)−1.

To show that L(s, χi) is continuous at s = 1 for i > 0 we show uniform
convergence of the series defining L(s, χi). Fix a closed interval I =
[s0, s1], where s0 > 0. We have to show that given ε > 0 there is an m0

such that ∣∣∣∣∣
n∑

k=m

χi(n)

ns

∣∣∣∣∣ < ε

for all m ≥ m0, for all s ∈ I.
The idea is to apply Abel’s partial summation formula. Note first that
if i > 0 then ∣∣∣∣∣

n∑
k=m

χi(k)

∣∣∣∣∣ ≤ 2,

regardless of m and n. If we put Am−1 = 0 and

Ak =
k∑

l=m

χi(l)
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for k ≥ m then∣∣∣∣∣
n∑

k=m

χi(k)

ks

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=m

Ak − Ak−1
ks

∣∣∣∣∣
=

∣∣∣∣∣
n∑

k=m

Ak(k
−s − (k + 1)−s) + An(n+ 1)−s − Am−1m−s

∣∣∣∣∣
≤

n∑
k=m

2(k−s − (k + 1)−s) + 2(n+ 1)−s

= 2m−s

≤ 2m−s0 .

On the other hand, m−s0 < ε for all m sufficiently large.
Thus L(s, χi) is continuous for s > 0, if i > 0. We have

L(s, χ1) =
∏
p≡1,5

(
1− 1

ps

)−1 ∏
p≡3,7

(
1 +

1

ps

)−1
L(s, χ2) =

∏
p≡1,3

(
1− 1

ps

)−1 ∏
p≡5,7

(
1 +

1

ps

)−1
L(s, χ3) =

∏
p≡1,7

(
1− 1

ps

)−1 ∏
p≡3,5

(
1 +

1

ps

)−1
,

where we work modulo 8.
(d) If we multiply the three equations above together with ζ(a) we get:

3∏
i=0

L(s, χi) =
∏
p≡1

(
1− 1

ps

)−4 ∏
p≡3,5,7

(
1− 1

p2s

)−2
,

since if p ≡ 1 mod 8 the factor(
1± 1

ps

)−1
occurs in all expressions with a minus sign but for p ≡ 3, 5, 7 mod 8
there are two minuses and two pluses.
(e) We want to show that

L(s, χ2)L(s, χ3)

L(s, χ0)L(s, χ1)
=

∏
p≡5 mod 8

(1− p−s)4

(1− p−2s)2
.
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Both sides are the products of factors of the form(
1− 1

ps

)
and

(
1 +

1

ps

)
to various powers. It is enough to check we get the same powers on
both sides.
We check that if p appears on the LHS then p ≡ 5 mod 8.
Suppose that p ≡ 1 mod 8. Then(

1− 1

ps

)−1
occurs twice on the top and bottom of the LHS, so not at all in total.
If p ≡ 3 mod 8 then (

1− 1

ps

)−1
occurs once, as a factor of L(s, χ2), on the top and once on the bottom,
as a factor of L(s, χ0). Similarly(

1 +
1

ps

)−1
occurs once, as a factor of L(s, χ3), on the top and once on the bottom,
as a factor of L(s, χ1). In total there is no contribution from p ≡
3 mod 8. One can check that something similar happens for p ≡ 7
mod 8, with the roles of L(s, χ2) and L(s, χ0) switched with L(s, χ3)
and L(s, χ1).
Now suppose that p ≡ 5 mod 8. Then(

1− 1

ps

)−1
occurs twice on the bottom of the LHS. Thus we get a factor of(

1− 1

ps

)2

On the other hand (
1 +

1

ps

)−1
occurs twice on the top. Thus we get a factor of(

1 +
1

ps

)−2
.

Thus we get the same powers as on the RHS.
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By symmetry we get

L(s, χ1)L(s, χ3)

L(s, χ0)L(s, χ2)
=

∏
p≡3 mod 8

(1− p−s)4

(1− p−2s)2

L(s, χ1)L(s, χ2)

L(s, χ0)L(s, χ3)
=

∏
p≡7 mod 8

(1− p−s)4

(1− p−2s)2
.

(f) By (e) we have

(1− p−2s)−2L(s, χ0)L(s, χ1)

L(s, χ2)L(s, χ3)
=

∏
p≡5 mod 8

(1− p−s)−4

Taking the limit as s approaches 1 from above we see that

lim
s→1+

∏
p≡5 mod 8

(1− p−s)−1 =∞.

Arguing as in (6.8.1) this implies that∑
p≡5 mod 8

1

p

diverges. Similarly both∑
p≡3 mod 8

1

p
and

∑
p≡7 mod 8

1

p

diverge.
6.9.1. We have

π((1 + α)x)− π(x)

x/ log x
> c1(1 + α)x)/ log(1 + α)x · log x/x− c2

= c1(1 + α) log x/(log x+ log(1 + α))− c2
= c1(1 + α)/(1 + log(1 + α)/ log x)− c2
= c1(1 + α)(1− log(1 + α)/ log x+ log2(1 + α)/ log2 x+ . . . )− c2

= c1(1 + α− β) +O

(
1

log x

)
.

If 1+α > β then the last expression goes to infinity, so that the number
of primes between x and (1 + α)x tends to infinity.
6.9.3. Note that every integer 7 ≤ m ≤ 19 is a sum of distinct primes
p < 13

7 = 7, 8 = 5+3, 9 = 7+2, 10 = 7+3, 11 = 11, 12 = 7+5, 13 = 11+2,

14 = 11+3, 15 = 7+5+3, 16 = 11+5, 17 = 7+5+3+2, 18 = 11+7, 19 = 11+5+3.
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Suppose that 19 < m ≤ 26. Then 7 ≤ m − 13 ≤ 13. Thus m − 13
is a sum of primes less than 13 and adding 13, m is a sum of distinct
primes. Thus every integer 7 ≤ m ≤ 26 is a sum of distinct primes
p ≤ 13.
Now suppose that we know every integer 7 ≤ m ≤ 2p is a sum of
distinct primes at most p. Pick a prime p < q ≤ 2p. If 2p < m ≤ 2q
then m− q ≤ q ≤ 2p. In this case m− q is a sum of distinct primes less
than p and adding on q, m is a sum of distinct primes at most q > p.
6.9.4. (a) We apply partial summation to

λn = pn cn = 1 and f(x) = log x.

We get ∑
p≤x

log x = π(x) log x−
∫ x

2

π(t)

t
dt.

Consider estimating ∫ x

2

dt

logn t

where n = 1 or 2. We split this integral into two parts∫ x

2

dt

logn t
=

∫ √x
2

dt

logn t
+

∫ x

√
x

dt

logn t

≤
√
x

logn t
+

x

logn
√
x

= O(
√
x) +O

(
x

logn x

)
= O

(
x

logn x

)
.

As

π(x) =
x

log x
+O

(
x

log2 x

)
we see that ∫ x

2

π(t)

t
dt = O

(
x

log x

)
+O

(
x

log2 x

)
= O

(
x

log x

)
.

Thus

ϑ(x) = x+O

(
x

log x

)
.

(b) Fix ε > 0. As
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O

(
x

log x

)
= o(x),

we have
(1− ε)x <

∑
p≤x

log p < (1 + ε)x

for x sufficiently large. If we exponentiate then we get

e(1−ε)x <
∏
p≤x

p < e(1+ε)x

for x sufficiently large.
(c) If we take the inequality above and divide through by ex then we
get

e−εx <

∏
p≤x p

ex
< eεx

for x sufficiently large.
It does not seem possible to decide whether or not the ratio in the
middle tends to one or not from this.
6.9.6. Let m = n+ k. If k ≥ n then pick a prime

xm/2y < p ≤ 2xm/2y.

If p divides two integers less then m then p divides m, in which case
either m = p or m = 2p. If m = p then m is odd and

p ≤ 2xm/2y

< m

= p,

a contradiction. If m = 2p then

p = m/2

= xm/2y

< p,

a contradiction. Thus p divides only one integer l ≤ m. If we add

1

n
+

1

n+ 1
+ · · ·+ 1

m

in the usual way then the denominator is divisible by p and the numer-
ator is congruent to 1 modulo p, since all terms in the numerator other
than the term corresponding to 1/l are divisible by p.
Thus if k > n then

1

n
+

1

n+ 1
+ · · ·+ 1

m
.
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is not an integer.
Now suppose that k ≤ n. Then

1

n
+

1

n+ 1
+ · · ·+ 1

m
≤ 1

n
+

1

n+ 1
+ · · ·+ 1

2n

<
1

n
+

1

n
+ · · ·+ 1

n
= 1.

As the first sum is positive, it is not an integer.
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