MODEL ANSWERS TO THE SIXTH HOMEWORK

6.8.1. We know that

$$
\lim _{s \rightarrow 1^{+}} \prod_{q}\left(1-\frac{1}{q^{-s}}\right)^{-1}=\infty
$$

If we take logs we get

$$
\lim _{s \rightarrow 1^{+}} \sum_{q} \log \left(1-\frac{1}{q^{-s}}\right)=-\infty
$$

As

$$
\log \left(1-\frac{1}{q^{-s}}\right) \geq \frac{-2}{q^{-s}}
$$

this implies

$$
\lim _{s \rightarrow 1^{+}} \sum_{q}-\frac{2}{q^{-s}}=-\infty
$$

Thus

$$
\lim _{s \rightarrow 1^{+}} \sum_{q} \frac{1}{q^{-s}}=\infty
$$

This implies

$$
\sum_{q} \frac{1}{q}
$$

diverges.
6.8.2. In the course of the proof of (9.2) we established that

$$
\lim _{s \rightarrow 1^{+}}(s-1) \zeta(s)=1
$$

We also proved that $L(s)$ is continuous at $s=1$ and that $L(1) \neq 0$. Thus

$$
\begin{aligned}
\lim _{s \rightarrow 1^{+}}(s-1) \zeta(s) L(s) & =\lim _{s \rightarrow 1^{+}}(s-1) \zeta(s) \cdot \lim _{s \rightarrow 1^{+}} L(s) \\
& =L(1) \\
& \neq 0
\end{aligned}
$$

As we showed

$$
\zeta(s) L(s)=\left(1-\frac{1}{2^{s}}\right)^{-1} \prod_{q}\left(1-\frac{1}{q^{s}}\right)^{-2} \cdot \prod_{r}\left(1-\frac{1}{r^{2 s}}\right)^{-1}
$$

it follows that
$L(1)=\lim _{s \rightarrow 1^{+}}\left(1-\frac{1}{2^{s}}\right)^{-1} \cdot \lim _{s \rightarrow 1^{+}}(s-1) \prod_{q}\left(1-\frac{1}{q^{s}}\right)^{-2} \cdot \lim _{s \rightarrow 1^{+}} \prod_{r}\left(1-\frac{1}{r^{2 s}}\right)^{-1}$.
We proved that the last functions is continuous and non-zero at 1 . As the first function is also continuous and non-zero at 1 , it follows that

$$
\lim _{s \rightarrow 1^{+}}(s-1) \prod_{q}\left(1-\frac{1}{q^{s}}\right)^{-2}=A
$$

where A is non-zero.
Thus

$$
\lim _{s \rightarrow 1^{+}}(s-1) \prod_{q}\left(1-\frac{1}{q^{s}}\right)^{-1}=0 .
$$

Suppose that the limit

$$
\lim _{s \rightarrow 1^{+}} \prod_{r}\left(1-\frac{1}{r^{s}}\right)^{-1}=B
$$

exists and is finite. As

$$
\zeta(s)=\left(1-\frac{1}{2^{s}}\right)^{-1} \prod_{q}\left(1-\frac{1}{q^{s}}\right)^{-1} \cdot \prod_{r}\left(1-\frac{1}{r^{s}}\right)^{-1},
$$

Then

$$
\begin{aligned}
1 & =\lim _{s \rightarrow 1^{+}}\left(1-\frac{1}{2^{s}}\right)^{-1} \lim _{s \rightarrow 1^{+}}(s-1) \prod_{q}\left(1-\frac{1}{q^{s}}\right)^{-1} \cdot \lim _{s \rightarrow 1^{+}} \prod_{r}\left(1-\frac{1}{r^{s}}\right)^{-1} \\
& =2 \cdot 0 \cdot B \\
& =0
\end{aligned}
$$

a contradiction.
Thus

$$
\lim _{s \rightarrow 1^{+}} \prod_{r}\left(1-\frac{1}{r^{s}}\right)^{-1}
$$

diverges. Arguing as in (6.8.1) it follows that the sum of the reciprocals of the primes congruent to 3 modulo 4 diverges.
6.8.3. We have

$$
\begin{aligned}
\prod_{p} \sum_{k=0}^{\infty} f\left(p^{k}\right) & =\sum_{r, p_{1}, p_{2}, \ldots, p_{r}, k_{1}, k_{2}, \ldots, k_{r}} \prod_{i=1}^{r} f\left(p_{i}^{k_{i}}\right) \\
& =\sum_{r, p_{1}, p_{2}, \ldots, p_{r}, k_{1}, k_{2}, \ldots, k_{r}} f\left(\prod_{i=1}^{r} p_{i}^{k_{i}}\right) \\
& =\sum_{n=1}^{\infty} f(n),
\end{aligned}
$$

where we are allowed to rearrange the sum by absolute convergence. If $f(n)$ is completely multiplicative and $f(p)=1$ then $f\left(p^{k}\right)=1$ for every k so that

$$
\sum_{k=0}^{\infty} f\left(p^{k}\right)
$$

diverges, a contradiction. We have

$$
\begin{aligned}
\prod_{p}(1-f(p))^{-1} & =\prod_{p} \sum_{k=0}^{\infty} f(p)^{k} \\
& =\prod_{p} \sum_{k=0}^{\infty} f\left(p^{k}\right)
\end{aligned}
$$

and so we done by the first part.
2. (a) Suppose that

$$
g(x)=\frac{p(x)}{q(x)} e^{-1 / x^{2}}
$$

for $x \neq 0$, where $p(x)$ and $q(x)$ are polynomials. Then

$$
\begin{aligned}
g^{\prime}(x) & =\frac{p^{\prime}(x) q(x) e^{-1 / x^{2}}+2 p(x) q(x) e^{-1 / x^{2}} / x^{3}-q^{\prime}(x) p(x) e^{-1 / x^{2}}}{q^{2}(x)} \\
& =\frac{p^{\prime}(x) q(x) x^{3}+2 p(x) q(x)-q^{\prime}(x) p(x) x^{3}}{q^{2}(x) x^{3}} e^{-1 / x^{2}} .
\end{aligned}
$$

Thus we are done by induction on n.
(b) Suppose that

$$
g(x)=\frac{p(x)}{q(x)} e^{-1 / x^{2}}
$$

for $x \neq 0$, where $p(x)$ and $q(x)$ are polynomials and $g(0)=0$. We first check that

$$
\lim _{x \rightarrow 0} \frac{p(x)}{q(x)} e^{-1 / x^{2}}=0
$$

Factoring $p(x)$ and $q(x)$ it suffices to prove that

$$
\lim _{x \rightarrow 0} x^{k} e^{-1 / x^{2}}=0
$$

for any integer k. Replacing x by $1 / x$ it suffices to prove that

$$
\lim _{x \rightarrow \infty} x^{k} e^{-x^{2}}=0
$$

for any integer k. This is easy (and well-known).
We now compute the derivative of $g(x)$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0} & =\lim _{x \rightarrow 0} \frac{p(x)}{q(x)} e^{-1 / x^{2}} \\
& =0
\end{aligned}
$$

Thus

$$
f^{(n)}(0)=0 .
$$

by induction on n.
(c) The Taylor series for $f(x)$ has all of its coefficients zero. This surely converges everywhere and defines the zero function but this is not equal to $f(x)$.

