
MODEL ANSWERS TO THE SIXTH HOMEWORK

6.8.1. We know that

lim
s→1+

∏
q

(
1− 1

q−s

)−1
=∞.

If we take logs we get

lim
s→1+

∑
q

log

(
1− 1

q−s

)
= −∞.

As

log

(
1− 1

q−s

)
≥ −2

q−s
,

this implies

lim
s→1+

∑
q

− 2

q−s
= −∞.

Thus

lim
s→1+

∑
q

1

q−s
=∞.

This implies ∑
q

1

q
,

diverges.
6.8.2. In the course of the proof of (9.2) we established that

lim
s→1+

(s− 1)ζ(s) = 1.

We also proved that L(s) is continuous at s = 1 and that L(1) 6= 0.
Thus

lim
s→1+

(s− 1)ζ(s)L(s) = lim
s→1+

(s− 1)ζ(s) · lim
s→1+

L(s)

= L(1)

6= 0.

As we showed

ζ(s)L(s) =

(
1− 1

2s

)−1∏
q

(
1− 1

qs

)−2
·
∏
r

(
1− 1

r2s

)−1
,
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it follows that

L(1) = lim
s→1+

(
1− 1

2s

)−1
· lim
s→1+

(s−1)
∏
q

(
1− 1

qs

)−2
· lim
s→1+

∏
r

(
1− 1

r2s

)−1
.

We proved that the last functions is continuous and non-zero at 1. As
the first function is also continuous and non-zero at 1, it follows that

lim
s→1+

(s− 1)
∏
q

(
1− 1

qs

)−2
= A

where A is non-zero.
Thus

lim
s→1+

(s− 1)
∏
q

(
1− 1

qs

)−1
= 0.

Suppose that the limit

lim
s→1+

∏
r

(
1− 1

rs

)−1
= B

exists and is finite. As

ζ(s) =

(
1− 1

2s

)−1∏
q

(
1− 1

qs

)−1
·
∏
r

(
1− 1

rs

)−1
,

Then

1 = lim
s→1+

(
1− 1

2s

)−1
lim
s→1+

(s− 1)
∏
q

(
1− 1

qs

)−1
· lim
s→1+

∏
r

(
1− 1

rs

)−1
= 2 · 0 ·B
= 0,

a contradiction.
Thus

lim
s→1+

∏
r

(
1− 1

rs

)−1
diverges. Arguing as in (6.8.1) it follows that the sum of the reciprocals
of the primes congruent to 3 modulo 4 diverges.
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6.8.3. We have∏
p

∞∑
k=0

f(pk) =
∑

r,p1,p2,...,pr,k1,k2,...,kr

r∏
i=1

f(pkii )

=
∑

r,p1,p2,...,pr,k1,k2,...,kr

f(
r∏

i=1

pkii )

=
∞∑
n=1

f(n),

where we are allowed to rearrange the sum by absolute convergence.
If f(n) is completely multiplicative and f(p) = 1 then f(pk) = 1 for
every k so that

∞∑
k=0

f(pk)

diverges, a contradiction. We have∏
p

(1− f(p))−1 =
∏
p

∞∑
k=0

f(p)k

=
∏
p

∞∑
k=0

f(pk),

and so we done by the first part.
2. (a) Suppose that

g(x) =
p(x)

q(x)
e−1/x

2

,

for x 6= 0, where p(x) and q(x) are polynomials. Then

g′(x) =
p′(x)q(x)e−1/x

2
+ 2p(x)q(x)e−1/x

2
/x3 − q′(x)p(x)e−1/x

2

q2(x)

=
p′(x)q(x)x3 + 2p(x)q(x)− q′(x)p(x)x3

q2(x)x3
e−1/x

2

.

Thus we are done by induction on n.
(b) Suppose that

g(x) =
p(x)

q(x)
e−1/x

2

,

for x 6= 0, where p(x) and q(x) are polynomials and g(0) = 0. We first
check that

lim
x→0

p(x)

q(x)
e−1/x

2

= 0.
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Factoring p(x) and q(x) it suffices to prove that

lim
x→0

xke−1/x
2

= 0,

for any integer k. Replacing x by 1/x it suffices to prove that

lim
x→∞

xke−x
2

= 0,

for any integer k. This is easy (and well-known).
We now compute the derivative of g(x).

lim
x→0

g(x)− g(0)

x− 0
= lim

x→0

p(x)

q(x)
e−1/x

2

= 0.

Thus
f (n)(0) = 0.

by induction on n.
(c) The Taylor series for f(x) has all of its coefficients zero. This surely
converges everywhere and defines the zero function but this is not equal
to f(x).
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