MODEL ANSWERS TO THE SIXTH HOMEWORK

6.8.1. We know that
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diverges.
6.8.2. In the course of the proof of (9.2) we established that
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We also proved that L(s) is continuous at s = 1 and that L(1) # 0.
Thus
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As we showed



it follows that
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We proved that the last functions is continuous and non-zero at 1. As
the first function is also continuous and non-zero at 1, it follows that
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where A is non-zero.
Thus
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Suppose that the limit
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exists and is finite. As
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a contradiction.
Thus
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diverges. Arguing as in (6.8.1) it follows that the sum of the reciprocals

of the primes congruent to 3 modulo 4 diverges.
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6.8.3. We have
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where we are allowed to rearrange the sum by absolute convergence.
If f(n) is completely multiplicative and f(p) = 1 then f(p*) = 1 for

every k so that
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diverges, a contradiction. We have
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and so we done by the first part.
2. (a) Suppose that
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for x # 0, where p(x) and ¢(z) are polynomials. Then
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Thus we are done by induction on n.
(b) Suppose that
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for x # 0, where p(z) and ¢(x) are polynomials and ¢g(0) = 0. We first
check that
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Factoring p(z) and ¢(x) it suffices to prove that

lim zFe 1/ = 0,

z—0
for any integer k. Replacing = by 1/z it suffices to prove that
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for any integer k. This is easy (and well-known).
We now compute the derivative of g(z).
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Thus

by induction on n.
(¢) The Taylor series for f(x) has all of its coefficients zero. This surely
converges everywhere and defines the zero function but this is not equal

to f(x).



