MODEL ANSWERS TO THE FIFTH HOMEWORK

6.7.4. (a) We apply partial summation to

$$
\lambda_{n}=p_{n} \quad c_{n}=1 \quad \text { and } \quad f(x)=\log x .
$$

We get

$$
\sum_{p \leq x} \log x=\pi(x) \log x-\int_{2}^{x} \frac{\pi(t)}{t} \mathrm{~d} t
$$

Now

$$
\int_{2}^{x} \frac{\mathrm{~d} t}{\log t}=0(x)
$$

As

$$
\pi(x) \leq c \frac{x}{\log x}
$$

we see that

$$
\int_{2}^{x} \frac{\pi(t)}{t} \mathrm{~d} t=0(x)
$$

Thus

$$
\vartheta(x)<c_{2} x .
$$

If we exponentiate then

$$
\prod_{p \leq x} p<A_{1}^{x}
$$

(b) We apply partial summation to

$$
\lambda_{n}=p_{n} \quad c_{n}=\log p_{n} \quad \text { and } \quad f(x)=\frac{1}{\log x} .
$$

We get

$$
\sum_{p \leq x} 1=\frac{\vartheta(x)}{\log x}-\int_{2}^{x} \frac{\vartheta(t)}{t \log ^{2} t} \mathrm{~d} t
$$

Now

$$
\begin{aligned}
\int_{2}^{x} \frac{\mathrm{~d} t}{\log ^{2} t} & =\int_{2}^{x^{1 / 2}} \frac{\mathrm{~d} t}{\log ^{2} t}+\int_{x^{1 / 2}}^{x} \frac{\mathrm{~d} t}{\log ^{2} t} \\
& =O\left(x^{1 / 2}\right)+O\left(\frac{x}{\log x}\right) \\
& =O\left(\frac{x}{\log x}\right)
\end{aligned}
$$

As

$$
\vartheta(x) \leq c_{2} x
$$

we see that

$$
\int_{2}^{x} \frac{\vartheta(t)}{t \log ^{2} t} \mathrm{~d} t=O\left(\frac{x}{\log x}\right)
$$

Thus

$$
\pi(x)=\frac{\vartheta(x)}{\log x}+O\left(\frac{x}{\log x}\right)
$$

6.7.5. (a) Let p be a prime. We have to check that the same multiple of $\log p$ appears on both sides. Note that the largest power of p which divides

$$
[1,2,3, \ldots, n]
$$

is equal to the largest power of p which is less than n. Suppose that $p^{m} \leq n$ but that $p^{m+1}>n$. Thus the coefficient of $\log p$ which appears on the RHS is m.
On the LHS we also get m copies of p, since there are m integers i such that $p^{i} \leq n, 1 \leq i \leq m$.
(b) Let p be a prime. We have to check that the same multiple of $\log p$ appears on both sides. But $\log p$ appears on the LHS is $p^{i} \leq x$ and on the RHS if $p \leq x^{1 / i}$, that is, if $p^{i} \leq x$. Thus

$$
\psi(x)=\sum_{m} \vartheta\left(x^{1 / m}\right)
$$

Note that $2>x^{1 / m}$ if and only if $2^{m}>x$ if and only if

$$
m>\frac{\log x}{\log 2} .
$$

We have

$$
\begin{aligned}
\sum_{m>1} \vartheta\left(x^{1 / m}\right) & =\sum_{m=2}^{\log x / \log 2} \vartheta\left(x^{1 / m}\right) \\
& \leq c\left(x^{1 / 2}+\sum_{m=3}^{\log x / \log 2}\right) x^{1 / 3} \\
& \leq c\left(x^{1 / 2}+x^{1 / 3} \log x\right) \\
& =O\left(x^{1 / 2}\right) \\
& 2
\end{aligned}
$$

Thus

$$
\begin{aligned}
\psi(x) & =\sum_{m} \vartheta\left(x^{1 / m}\right) \\
& =\vartheta(x)+O\left(x^{1 / 2}\right) \\
& =O(x)
\end{aligned}
$$

If we exponentiate then we see that

$$
\begin{aligned}
{[1,2, \ldots, n] } & =e^{\psi(n)} \\
& =A_{2}^{n}
\end{aligned}
$$

6.7.6. Since

$$
\vartheta(n)-\vartheta(n-1)= \begin{cases}\log n & \text { if } n \text { is prime } \\ 0 & \text { otherwise }\end{cases}
$$

it is easy to see that

$$
\sum_{p \leq N} F(p)=\sum_{n=2}^{N}(\vartheta(n)-\vartheta(n-1)) \frac{F(n)}{\log n}
$$

We apply Abel summation formula to the RHS with

$$
a_{k}=\vartheta(k)-\vartheta(k-1) \quad \text { and } \quad b_{k}=\frac{F(k)}{\log k}
$$

The RHS becomes

$$
\sum \theta(k)\left(\frac{F(k)}{\log k}-\frac{F(k-1)}{\log k-1}\right)+\theta(N) \frac{F(N+1)}{\log (N+1)}
$$

Since

$$
\frac{F(k)}{\log k}-\frac{F(k-1)}{\log k-1} \leq 0
$$

this sum is at most

$$
\sum c_{1} k\left(\frac{F(k)}{\log k}-\frac{F(k-1)}{\log k-1}\right)+c_{2} N \frac{F(N+1)}{\log (N+1)}
$$

where

$$
c_{1} k \leq \vartheta(k) \leq c_{2} k .
$$

If we reverse the partial summation then we get

$$
\sum c_{1} \frac{F(k)}{\log k}+\left(c_{2}-c_{1}\right) N \frac{F(N+1)}{\log (N+1)}
$$

If

$$
\sum c_{1} \frac{F(k)}{\log k}
$$

converges then

$$
\frac{F(k)}{k}=o(k)
$$

so that

$$
c_{1} \sum \frac{F(k)}{\log k}+\left(c_{2}-c_{1}\right) N \frac{F(N+1)}{\log (N+1)} .
$$

converges. Thus

$$
\sum_{p \leq N} F(p)
$$

converges. On the other hand

$$
\sum \theta(k)\left(\frac{F(k)}{\log k}-\frac{F(k-1)}{\log k-1}\right)+\theta(N) \frac{F(N+1)}{\log (N+1)}
$$

is at least

$$
\sum c_{2} k\left(\frac{F(k)}{\log k}-\frac{F(k-1)}{\log k-1}\right)+c_{1} N \frac{F(N+1)}{\log (N+1)}
$$

This is equal to

$$
\sum c_{2} \frac{F(k)}{\log k}+\left(c_{1}-c_{2}\right) N \frac{F(N+1)}{\log (N+1)}
$$

If

$$
\sum_{p \leq N} F(p)
$$

converges then

$$
\sum c_{2} \frac{F(k)}{\log k}+\left(c_{1}-c_{2}\right) N \frac{F(N+1)}{\log (N+1)}
$$

converges. As

$$
\pi(N) \geq c_{3} \frac{N}{\log N}
$$

it follows that

$$
N \frac{F(N+1)}{\log (N+1)}
$$

goes to zero. But then

$$
\sum \frac{F(k)}{\log k}
$$

converges.
6.7.7. (a) We have

$$
\begin{aligned}
\left|\left\{n \mid p_{n} \leq x, d_{n}>c \log x\right\}\right| \cdot c \log x & =c \log x \cdot \sum_{p_{n} \leq x, d_{n}>c \log x} 1 \\
& =\sum_{p_{n} \leq x, d_{n}>c \log x} c \log x \\
& <\sum_{p_{n} \leq x, d_{n}>c \log x} d_{n} \\
& =p_{n}-p_{m} \\
& \leq x .
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
\left|\left\{n \mid p_{n} \leq x, d_{n}>c \log p_{n}\right\}\right| & =\left|\left\{n \mid \sqrt{x}<p_{n} \leq x, d_{n}>c \log p_{n}\right\}\right|+\mid\left\{n \mid p_{n} \leq \sqrt{x}, d_{n}>c \log p_{n}\right\} \\
& <\left|\left\{n \mid \sqrt{x}<p_{n} \leq x, d_{n}>c \log p_{n}\right\}\right|+\sqrt{x} \\
& <\left|\left\{n \mid \sqrt{x}<p_{n} \leq x, d_{n}>c \log \sqrt{x}\right\}\right|+O(\sqrt{x}) \\
& =\left|\left\{n \mid p_{n} \leq x, d_{n}>c / 2 \log x\right\}\right|+O(\sqrt{x}) \\
& \leq \frac{2 x}{c \log x}+O(\sqrt{x}) .
\end{aligned}
$$

We have

$$
\left|\left\{n \mid p_{n} \leq x, d_{n} \leq c \log p_{n}\right\}\right| \geq x-\frac{2 x}{c \log x}+O(\sqrt{x})
$$

As

$$
\pi(x) \leq c_{2} \frac{x}{\log x}
$$

it follows that if c is large enough then

$$
\left|\left\{n \mid p_{n} \leq x, d_{n}<c \log p_{n}\right\}\right| \gg \pi(x) .
$$

