MODEL ANSWERS TO THE FOURTH HOMEWORK

6.5.2. (a) We will prove a slightly stronger result, we will allow = to be
any positive real number and we will prove that

p(x,n) = zp(n) + O(r(n)" z7).
We proceed by induction on r = w(n). We may assume that r > 0.
Pick a prime p dividing n and let n = p®m, where m is coprime to p.

If k£ is not coprime to n then either p divides k or k is not coprime to
m. By induction

p(x,m) = xp(m) + O(r(m)ra)
= zp(m) + O(1(n)Lzl),
since w(m) =r — 1.
The number of integers up to xn divisible by p are
n

L—41

p
and so the number of integers up to xn not divisible by p is
anJ—L@J:xn—@—l—{xn}—{ﬁ}
P p

n n

=x(n——)+ TNy —1—
( p) {an}—{ ; }

=zp(n)+ E,

where |E| is at most one.
Now the number of integers up to xn which are divisible by p and are
not coprime to m is equal to

can/ps — p(x,n/p) = van/ps— zp(n/p) + O(r(n/p)a.)
= an/p —zp(n/p) + O(7(n)z2).
Putting all of this together we are done by induction.
(b) We just have to show
7(n)
p(n)
goes to zero as n goes to infinity. Note that both top and bottom are

multiplicative and so the ratio is multiplicative.
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If p© is a power of the prime p then

() e+l
e(pe)  plpet—1)

Suppose this ratio is bigger than one. Then e + 1 > p and it is easy to
check that the only possibility is that p = 2 and e = 2, in which case
the ratio is 3/2.

Now if n goes to infinity, one of two things must happen. Either n has
a prime factor p which goes to infinity or the exponent e of some fixed
prime p goes to infinity.

Thus we are reduced to the case that n = p© is a power of a prime. If
either p or e goes to infinity then it is clear that the ratio

e+ 1
p(pe=t —1)
goes to zero.
6.5.3. We use the notation
1
<ZE> = L2+ §J

to denote the nearest integer to x.

We first check that
Lea =vx/20+ (x/2).
Suppose that {z/2} < 1/2. Then
(x/2) = Lx/2, and Lry =2 /2,
and so

Lra = 2Lx/2.
=rx/204 (x/2).

Now supppose that {x/2} > 1/2. Then
(x/2) =rx/20+1 and ey =2tx/25+ 1
and so

LT = 2\_1’/24 +1
= Ll‘/Q_l + <x/2>
2



We compute P(z,m) by inclusion-exclusion
P(x,m)=A(z,m+1)+1
=vra— /20— () cafpio— Y ca/2pin) + () cx/pipja— Y La/2pipia) + ..
= (2/2) =) (a/p) + > _(x/pipj) + ..
= (z/2a) - zb:<x/26>.
Now let 7 = 7(y/x). Then
m(z) =+ A(z,r)

= 7m(v/x) + P(z,m(z) — 1.

Note that
V200 = v/2- 100
= v2V100
~ 14.142.
Now the odd primes up to 14 are 3, 5, 7, 11 and 13. Thus
m(v/200) = 6.

On the other hand, one can compute

P(200,5) =100 — (334+204+14+9+8)+ (7T+5+3+3+3+2+2+1+14+1)—(1+1+1

= 41.
Thus
7(200) = 7(14) + P(200,5) — 1
=6+41—-1
= 46.
6.6.1. (a) We apply partial summation to
1
An = Dn c, =1 and flz)=—.
x
We get
1 v t
i m(@) _ / S0 g,
= D x 9 t
As




the first expression on the RHS is certainly o(1). Rearranging we get

“m(t) 1
/2 t—2dt = Z]—) +0(1) ~ loglog x.

p<z

(b) Suppose that p(z) > 146 > 1. Then

T(t)
log 1 ~ [ —=dt
oglogx /2 2
(1
>/( +5)tdt
5 t2logt
Todt
=(1+96
(1+ )/2 tlogt

=(1+9) [log log t]

> (1+9)loglogz,

x

2

and so 0 = 0.
Suppose that p(z) <1—6 < 1. Then

()
log1 ~ [ —=dt
oglogx /2 2

</ (1—5)tdt

5 t?logt

Todt
=(1-9
( )/2 tlogt

= (1-96) [log logtL

= (1 —9)(loglog x — log log 2),

x

so that 6 = 0.
(c) We apply partial summation to
1
A = Pn cn =1 and f(z) = 08
x
We get
log p v logt — 1

> = p(z) + / m(t)—5—dt.

<z b 2
Thus

log(z) + O ( log @ ) + p(z) = /;w(t)logt — L

log log x



Note that

log x
ple) =0 (1oglog x) ‘
If p(t) > 1+ d > 1 then the last integral is at least

(1+9) / % + O(loglogz) = (1 + 0)(log z) + O(log log x).
2

Thus 6 < 0. Similarly, if p(t) < 1 — 6 < 1 then the last integral is at
most

(1—0) /;% = (14 0)(logx) + O(loglog z).

Thus § = 0.
6.6.3. We have

On the other hand

T ~ Z log p

zl=e<p<z

> Z log 2! ¢
zl=e<p<z
=(1—¢)logzx Z 1

zl=e<p<z
= (1—€)(n(z) —n(z'9))logz
=(1—¢)(m(z) + Oz ) log .
Putting these together, we see that

m(x)

6.6.4. We apply partial summation to

T

~ logz’

An = Dn Cp = — and fz) =
Pn
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Then

Z 1 . Zpgzzl)+ prgt%dt
o plogp log 5 tlog*t
x 1
_0 log log x . Zp<;pdt
log o tlog™t
Note that the last integral converges, since
1
Z — ~loglogt
p<t p

and the integral of
loglogt

tlog*t

converges.

6.6.6. (a) We have

ZAkbk_bk 1) + Apbpyr — Ap1bi, ZAkbk ZAkbk 1+ Apbngr — Apo1by

k=m
n+1
= Z Akbk - Z Akflbk =+ Ananrl - Amflbm
k=m k=m-+1
= Z Apby, — Z Ap_1by,
k=m k=m
— Z(Ak — Ap_1)by
k=m
= Z akbk.
k=m
(b) Suppose that > a,, converges and by, bs, . .. is monotonic and bounded.
Possibly passing to the tail of the sequence by, by,... we may assume
that every element of by, by, ... has the same sign. Possibly replacing b;

by —b; we may assume that b; > 0. Suppose that b is an upper bound

for by, by, .... Then
|2 bl <B ) al
k=m k=m

so that the partial sums of > axby go to zero as m goes to infinity.
Thus ) agby converges.
Now suppose that > a, has bounded partial sums and by, by, ... tends

monotonically to zero. Then A,b,.; tends to zero so that A,b,,1 —
6



Apn_1b,, converges to zero as m and n tend to infinity. Thus to show
that the partial sums of > axby go to zero as we increase m, it suf-
fices to prove that the partial sums of Y Ay(by — bx_1) go to zero.
Possibly replacing by, by —br we may assume that by, bs, ... is mono-
tonic decreasing. Let oy = by, — by > 0, ;7 = limsup;s, 4; and
ﬁk_ = lim iIllek Al.

Then ) ay is absolutely convergent and ﬁff is bounded and monotonic.
Thus ) Ozkﬂ,:f converges by what we already proved.

On the other hand, the partial sums of > Ag(by — bx—_1) are bounded
from above by the partial sums of Y a8, and from below by >~ a3, .
(c) If we put a = (—1)* and b, = k=* then

S a1
k=m
so that _ a; has bounded partial sums and by, by, ... tends monoton-
ically to zero. Thus
> = S

k

converges by (b).
(d) Let ax, = (k/p) and by = k~°. Note that

p—1

> (k/p) =0,

k=0

since half of the numbers between 1 and p — 1 are squares. Thus > ay

has bounded partial sums. As by, by, ... tends monotonically to zero,
it follows that
Uk =) axby
k

converges by (b).
(e) Let ¢, = apk™° and dy = k*°~5. Then ) _ ¢}, converges and dy, ds, . . .
is monotonic and bounded. Thus

Skt = Y ad
converges for all s > sq.

Similarly if we ¢, = apk™° and dy = k*~*log k. Then ) ¢} converges
and dq, ds, ... is eventually monotonic and bounded for s > sy. Thus

> ap(log k)™ = ey,

converges for all s > s.



6.6.7. Note that if we integrate by parts then we get
[ [
o log"t 0 log"t
log"t], o tlog"ttt
x Toodt
- log" * n/o log"tt ¢’

It follows by induction that

li(x)

x 1z 2l (n—1)lx Toode
S/

— _l’_ _l’_ “ e
logz  log’z  log®x log" @ o log

Now to estimate the last integral, we break it into three parts.

Tdt 2t vE gt Tqt
n+1 = n+1 + n+1 + n+1,°
o log" ™t o log"™t 9 log""t vzlog" Tt

The first integral is constant. The second is over an interval of length
bounded by +/z of a function bounded by a constant (++1) and so
log 2

the second integral is O(y/x). The third integral is over an interval of
length bounded by x of a function which is bounded by

7 =0 ()
log"tty/x log" ™ w )

Thus the last integral is
x
0 :
(10gn+1 $)

n!/ dt1 :O< xl )
o log"*t't log" ™! 2

and so the result follows.
6.7.1. We have

Therefore




Note the difference between the upper and lower bound is 1/p(p — 1).
Thus

Sws(1-,) =X+ ity

p<z

1 a
:—loglogx+0+0( )+ —r
log x Zp(p—l)

1
:—loglogaH—B—i—O( ),
log x

where a, € (0, 1] so that the sum is convergent.
Now suppose that f(x) tends to zero as x tends to infinity. We apply
Cauchy’s mean value theorem to e/® and f(z) over the interval [z, x1].
It follows that we can find a € (z,x;) such that

ef((l) _ ef(xl) — ef(x) .
f(x1) = f(z)
If we let 21 go to infinity, we get

1 — /(@)
—f(x)

@)

so that
@ =1 4 f(a;)ef(“).

As a > z, and f(z) is monotonic decreasing, it follows that ef(® is
bounded from above. Thus

e’@ =14+ 0(f(x)).
Let

f(x) = Zlog (1 — %) + loglogz — B.
p

If we exponentiate then we get

1
ef(m)zl—l—O( )
log x

Thus, taking two terms over to the other side, we get

1 e B 1
1—=-) = o) .
H ( p> log x * (long)

p<z

6.7.2. (a) Suppose not. Then we may find ¢ > 0 and ng such that if
n > ng then p,y1 > (14 €)p,. By induction it follows that

Dn = (1 + E)n_nopm‘
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Thus
log p, > (n —ng)log(1l +€) + O(1).
On the other hand,
Pn < c4nlogn,
so that
log p, <logn + loglogn + O(1),
a contradiction.
(b) By Theorem 8.2 we may find a such that

Z logp —logx

p<w p

<a

for > 2. Let ¢ = €2%. Suppose that there is no prime between x and
cx. Then

1 1
Z 08D _ log cx Z 08D _ logx — 2a

p<cz p p<z p
> |2a — a
= a’

a contradiction.
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