
MODEL ANSWERS TO THE FOURTH HOMEWORK

6.5.2. (a) We will prove a slightly stronger result, we will allow x to be
any positive real number and we will prove that

ϕ(x, n) = xϕ(n) +O(τ(n)pxq).

We proceed by induction on r = ω(n). We may assume that r > 0.
Pick a prime p dividing n and let n = pem, where m is coprime to p.
If k is not coprime to n then either p divides k or k is not coprime to
m. By induction

ϕ(x,m) = xϕ(m) +O(τ(m)xxy)

= xϕ(m) +O(τ(n)xxy),

since ω(m) = r − 1.
The number of integers up to xn divisible by p are

x
xn

p
y

and so the number of integers up to xn not divisible by p is

xxny− x
xn

p
y = xn− xn

p
+ {xn } − { xn

p
}

= x(n− n

p
) + {xn } − { xn

p
}

= xϕ(n) + E,

where |E| is at most one.
Now the number of integers up to xn which are divisible by p and are
not coprime to m is equal to

xxn/py− ϕ(x, n/p) = xxn/py− xϕ(n/p) +O(τ(n/p)xxy)

= xn/p− xϕ(n/p) +O(τ(n)xxy).

Putting all of this together we are done by induction.
(b) We just have to show

τ(n)

ϕ(n)

goes to zero as n goes to infinity. Note that both top and bottom are
multiplicative and so the ratio is multiplicative.
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If pe is a power of the prime p then

τ(pe)

ϕ(pe)
=

e+ 1

p(pe−1 − 1)
.

Suppose this ratio is bigger than one. Then e+ 1 > p and it is easy to
check that the only possibility is that p = 2 and e = 2, in which case
the ratio is 3/2.
Now if n goes to infinity, one of two things must happen. Either n has
a prime factor p which goes to infinity or the exponent e of some fixed
prime p goes to infinity.
Thus we are reduced to the case that n = pe is a power of a prime. If
either p or e goes to infinity then it is clear that the ratio

e+ 1

p(pe−1 − 1)

goes to zero.
6.5.3. We use the notation

〈x〉 = xx+
1

2
y

to denote the nearest integer to x.
We first check that

xxy = xx/2y + 〈x/2〉.

Suppose that {x/2 } < 1/2. Then

〈x/2〉 = xx/2y and xxy = 2xx/2y

and so

xxy = 2xx/2y

= xx/2y + 〈x/2〉.

Now supppose that {x/2 } ≥ 1/2. Then

〈x/2〉 = xx/2y + 1 and xxy = 2xx/2y + 1

and so

xxy = 2xx/2y + 1

= xx/2y + 〈x/2〉.
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We compute P (x,m) by inclusion-exclusion

P (x,m) = A(x,m+ 1) + 1

= xxy− xx/2y− (
∑

xx/piy−
∑

xx/2piy) + (
∑

xx/pipjy−
∑

xx/2pipjy) + . . .

= 〈x/2〉 −
∑
〈x/pi〉+

∑
〈x/pipj〉+ . . .

=
∑
a

〈x/2a〉 −
∑
b

〈x/2b〉.

Now let r = π(
√
x). Then

π(x) = r + A(x, r)

= π(
√
x) + P (x, π(

√
x)− 1.

Note that
√

200 =
√

2 · 100

=
√

2
√

100

≈ 14.142.

Now the odd primes up to 14 are 3, 5, 7, 11 and 13. Thus

π(
√

200) = 6.

On the other hand, one can compute

P (200, 5) = 100− (33 + 20 + 14 + 9 + 8) + (7 + 5 + 3 + 3 + 3 + 2 + 2 + 1 + 1 + 1)− (1 + 1 + 1)

= 41.

Thus

π(200) = π(14) + P (200, 5)− 1

= 6 + 41− 1

= 46.

6.6.1. (a) We apply partial summation to

λn = pn cn = 1 and f(x) =
1

x
.

We get ∑
p≤x

1

p
=
π(x)

x
−
∫ x

2

−π(t)

t2
dt.

As

π(x) = O

(
x

log log x

)
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the first expression on the RHS is certainly o(1). Rearranging we get∫ x

2

π(t)

t2
dt =

∑
p≤x

1

p
+ o(1) ∼ log log x.

(b) Suppose that ρ(x) ≥ 1 + δ ≥ 1. Then

log log x ∼
∫ x

2

π(t)

t2
dt

>

∫ x

2

(1 + δ)t

t2 log t
dt

= (1 + δ)

∫ x

2

dt

t log t

= (1 + δ)

[
log log t

]x
2

> (1 + δ) log log x,

and so δ = 0.
Suppose that ρ(x) ≤ 1− δ ≤ 1. Then

log log x ∼
∫ x

2

π(t)

t2
dt

<

∫ x

2

(1− δ)t
t2 log t

dt

= (1− δ)
∫ x

2

dt

t log t

= (1− δ)
[
log log t

]x
2

= (1− δ)(log log x− log log 2),

so that δ = 0.
(c) We apply partial summation to

λn = pn cn = 1 and f(x) =
log x

x
.

We get ∑
p≤x

log p

p
= ρ(x) +

∫ x

2

π(t)
log t− 1

t2
dt.

Thus

log(x) +O

(
log x

log log x

)
+ ρ(x) =

∫ x

2

π(t)
log t− 1

t2
dt
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Note that

ρ(x) = O

(
log x

log log x

)
.

If ρ(t) ≥ 1 + δ ≥ 1 then the last integral is at least

(1 + δ)

∫ x

2

dt

t
+O(log log x) = (1 + δ)(log x) +O(log log x).

Thus δ ≤ 0. Similarly, if ρ(t) ≤ 1 − δ ≤ 1 then the last integral is at
most

(1− δ)
∫ x

2

dt

t
= (1 + δ)(log x) +O(log log x).

Thus δ = 0.
6.6.3. We have

x ∼
∑
p≤x

log p

≤
∑
p≤x

log x

= log x
∑
p≤x

1

= π(x) log x.

On the other hand

x ∼
∑

x1−ε≤p≤x

log p

≥
∑

x1−ε≤p≤x

log x1−ε

= (1− ε) log x
∑

x1−ε≤p≤x

1

= (1− ε)(π(x)− π(x1−ε)) log x

= (1− ε)(π(x) +O(x1−ε)) log x.

Putting these together, we see that

π(x) ∼ x

log x
.

6.6.4. We apply partial summation to

λn = pn cn =
1

pn
and f(x) =

1

log x
.
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Then ∑
p≤x

1

p log p
=

∑
p≤x

1
p

log x
+

∫ x

2

∑
p≤t

1
p

t log2 t
dt

= O

(
log log x

log x

)
+

∫ x

2

∑
p≤t

1
p

t log2 t
dt.

Note that the last integral converges, since∑
p≤t

1

p
∼ log log t

and the integral of
log log t

t log2 t
converges.
6.6.6. (a) We have
n∑

k=m

Ak(bk − bk−1) + Anbn+1 − Am−1bm =
n∑

k=m

Akbk −
n∑

k=m

Akbk−1 + Anbn+1 − Am−1bm

=
n∑

k=m

Akbk −
n+1∑

k=m+1

Ak−1bk + Anbn+1 − Am−1bm

=
n∑

k=m

Akbk −
n∑

k=m

Ak−1bk

=
n∑

k=m

(Ak − Ak−1)bk

=
n∑

k=m

akbk.

(b) Suppose that
∑
an converges and b1, b2, . . . is monotonic and bounded.

Possibly passing to the tail of the sequence b1, b2, . . . we may assume
that every element of b1, b2, . . . has the same sign. Possibly replacing bi
by −bi we may assume that bi ≥ 0. Suppose that b is an upper bound
for b1, b2, . . . . Then

|
n∑

k=m

akbk| ≤ b|
n∑

k=m

ak|

so that the partial sums of
∑
akbk go to zero as m goes to infinity.

Thus
∑
akbk converges.

Now suppose that
∑
an has bounded partial sums and b1, b2, . . . tends

monotonically to zero. Then Anbn+1 tends to zero so that Anbn+1 −
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Am−1bm converges to zero as m and n tend to infinity. Thus to show
that the partial sums of

∑
akbk go to zero as we increase m, it suf-

fices to prove that the partial sums of
∑
Ak(bk − bk−1) go to zero.

Possibly replacing bk by −bk we may assume that b1, b2, . . . is mono-
tonic decreasing. Let αk = bk − bk−1 ≥ 0, β+

k = lim supl≥k Al and
β−k = lim inf l≥k Al.
Then

∑
αk is absolutely convergent and β±k is bounded and monotonic.

Thus
∑
αkβ

±
k converges by what we already proved.

On the other hand, the partial sums of
∑
Ak(bk − bk−1) are bounded

from above by the partial sums of
∑
αkβ

+
k and from below by

∑
αkβ

−
k .

(c) If we put ak = (−1)k and bk = k−s then∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤ 1

so that
∑
ak has bounded partial sums and b1, b2, . . . tends monoton-

ically to zero. Thus ∑
k

(−1)kk−s =
∑

akbk

converges by (b).
(d) Let ak = (k/p) and bk = k−s. Note that

p−1∑
k=0

(k/p) = 0,

since half of the numbers between 1 and p− 1 are squares. Thus
∑
ak

has bounded partial sums. As b1, b2, . . . tends monotonically to zero,
it follows that ∑

k

(l/p)k−s =
∑

akbk

converges by (b).
(e) Let ck = akk

−s0 and dk = ks0−s. Then
∑
ck converges and d1, d2, . . .

is monotonic and bounded. Thus∑
akk

−s =
∑

ckdk

converges for all s ≥ s0.
Similarly if we ck = akk

−s0 and dk = ks0−s log k. Then
∑
ck converges

and d1, d2, . . . is eventually monotonic and bounded for s > s0. Thus∑
ak(log k)k−s =

∑
ckdk

converges for all s > s0.
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6.6.7. Note that if we integrate by parts then we get∫ x

0

dt

logn t
=

∫ x

0

1 · dt

logn t

=

[
t

logn t

]x
0

+n

∫ x

0

t dt

t logn+1 t

=
x

logn x
+ n

∫ x

0

dt

logn+1 t
.

It follows by induction that

li(x) =
x

log x
+

1!x

log2 x
+

2!x

log3 x
+ · · ·+ (n− 1)!x

logn x
+ n!

∫ x

0

dt

logn+1 t
.

Now to estimate the last integral, we break it into three parts.∫ x

0

dt

logn+1 t
=

∫ 2

0

dt

logn+1 t
+

∫ √x
2

dt

logn+1 t
+

∫ x

√
x

dt

logn+1 t
.

The first integral is constant. The second is over an interval of length
bounded by

√
x of a function bounded by a constant ( 1

logn+1 2
) and so

the second integral is O(
√
x). The third integral is over an interval of

length bounded by x of a function which is bounded by

1

logn+1√x
= O

(
1

logn+1 x

)
.

Thus the last integral is

O

(
x

logn+1 x

)
.

Therefore ∣∣∣∣n!

∫ x

0

dt

logn+1 t

∣∣∣∣ = O

(
x

logn+1 x

)
.

and so the result follows.
6.7.1. We have

−1/p

1− 1/p
= − 1

p− 1
≤ log

(
1− 1

p

)
≤ −1

p
.
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Note the difference between the upper and lower bound is 1/p(p− 1).
Thus∑

p≤x

log

(
1− 1

p

)
= −

∑
p

1

p
+

ap
p(p− 1)

= − log log x+ C +O

(
1

log x

)
+
∑ ap

p(p− 1)

= − log log x+B +O

(
1

log x

)
,

where ap ∈ (0, 1] so that the sum is convergent.
Now suppose that f(x) tends to zero as x tends to infinity. We apply
Cauchy’s mean value theorem to ef(x) and f(x) over the interval [x, x1].
It follows that we can find a ∈ (x, x1) such that

ef(a) =
ef(x1) − ef(x)

f(x1)− f(x)
.

If we let x1 go to infinity, we get

ef(a) =
1− ef(x)

−f(x)
,

so that

ef(x) = 1 + f(x)ef(a).

As a ≥ x, and f(x) is monotonic decreasing, it follows that ef(a) is
bounded from above. Thus

ef(x) = 1 +O(f(x)).

Let

f(x) =
∑
p

log

(
1− 1

p

)
+ log log x−B.

If we exponentiate then we get

ef(x) = 1 +O

(
1

log x

)
.

Thus, taking two terms over to the other side, we get∏
p≤x

(
1− 1

p

)
=

e−B

log x
+O

(
1

log2 x

)
.

6.7.2. (a) Suppose not. Then we may find ε > 0 and n0 such that if
n ≥ n0 then pn+1 ≥ (1 + ε)pn. By induction it follows that

pn ≥ (1 + ε)n−n0pn0 .
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Thus
log pn ≥ (n− n0) log(1 + ε) +O(1).

On the other hand,
pn < c4n log n,

so that
log pn < log n+ log log n+O(1),

a contradiction.
(b) By Theorem 8.2 we may find a such that∣∣∣∣∣∑

p≤x

log p

p
− log x

∣∣∣∣∣ < a

for x > 2. Let c = e2a. Suppose that there is no prime between x and
cx. Then ∣∣∣∣∣∑

p≤cx

log p

p
− log cx

∣∣∣∣∣ =

∣∣∣∣∣∑
p≤x

log p

p
− log x− 2a

∣∣∣∣∣
> |2a− a|
= a,

a contradiction.
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