MODEL ANSWERS TO THE FOURTH HOMEWORK

6.5.2. (a) We will prove a slightly stronger result, we will allow x to be any positive real number and we will prove that

$$
\varphi(x, n)=x \varphi(n)+O(\tau(n)\ulcorner x\urcorner) .
$$

We proceed by induction on $r=\omega(n)$. We may assume that $r>0$. Pick a prime p dividing n and let $n=p^{e} m$, where m is coprime to p. If k is not coprime to n then either p divides k or k is not coprime to m. By induction

$$
\begin{aligned}
\varphi(x, m) & =x \varphi(m)+O(\tau(m)\llcorner x\lrcorner) \\
& =x \varphi(m)+O(\tau(n)\llcorner x\lrcorner),
\end{aligned}
$$

since $\omega(m)=r-1$.
The number of integers up to $x n$ divisible by p are

$$
\left\llcorner\frac{x n}{p}\right\lrcorner
$$

and so the number of integers up to $x n$ not divisible by p is

$$
\begin{aligned}
\llcorner x n\lrcorner-\left\llcorner\frac{x n}{p}\right\lrcorner & =x n-\frac{x n}{p}+\{x n\}-\left\{\frac{x n}{p}\right\} \\
& =x\left(n-\frac{n}{p}\right)+\{x n\}-\left\{\frac{x n}{p}\right\} \\
& =x \varphi(n)+E
\end{aligned}
$$

where $|E|$ is at most one.
Now the number of integers up to $x n$ which are divisible by p and are not coprime to m is equal to

$$
\begin{aligned}
\llcorner x n / p\lrcorner-\varphi(x, n / p) & =\llcorner x n / p\lrcorner-x \varphi(n / p)+O(\tau(n / p)\llcorner x\lrcorner) \\
& =x n / p-x \varphi(n / p)+O(\tau(n)\llcorner x\lrcorner) .
\end{aligned}
$$

Putting all of this together we are done by induction.
(b) We just have to show

$$
\frac{\tau(n)}{\varphi(n)}
$$

goes to zero as n goes to infinity. Note that both top and bottom are multiplicative and so the ratio is multiplicative.

If p^{e} is a power of the prime p then

$$
\frac{\tau\left(p^{e}\right)}{\varphi\left(p^{e}\right)}=\frac{e+1}{p\left(p^{e-1}-1\right)}
$$

Suppose this ratio is bigger than one. Then $e+1>p$ and it is easy to check that the only possibility is that $p=2$ and $e=2$, in which case the ratio is $3 / 2$.
Now if n goes to infinity, one of two things must happen. Either n has a prime factor p which goes to infinity or the exponent e of some fixed prime p goes to infinity.
Thus we are reduced to the case that $n=p^{e}$ is a power of a prime. If either p or e goes to infinity then it is clear that the ratio

$$
\frac{e+1}{p\left(p^{e-1}-1\right)}
$$

goes to zero.
6.5.3. We use the notation

$$
\langle x\rangle=\left\llcorner x+\frac{1}{2}\right\lrcorner
$$

to denote the nearest integer to x.
We first check that

$$
\llcorner x\lrcorner=\llcorner x / 2\lrcorner+\langle x / 2\rangle .
$$

Suppose that $\{x / 2\}<1 / 2$. Then

$$
\langle x / 2\rangle=\llcorner x / 2\lrcorner \quad \text { and } \quad\llcorner x\lrcorner=2\llcorner x / 2\lrcorner
$$

and so

$$
\begin{aligned}
\llcorner x\lrcorner & =2\llcorner x / 2\lrcorner \\
& =\llcorner x / 2\lrcorner+\langle x / 2\rangle .
\end{aligned}
$$

Now supppose that $\{x / 2\} \geq 1 / 2$. Then

$$
\langle x / 2\rangle=\llcorner x / 2\lrcorner+1 \quad \text { and } \quad\llcorner x\lrcorner=2\llcorner x / 2\lrcorner+1
$$

and so

$$
\begin{aligned}
\llcorner x\lrcorner & =2\llcorner x / 2\lrcorner+1 \\
& =\llcorner x / 2\lrcorner+\langle x / 2\rangle . \\
& 2
\end{aligned}
$$

We compute $P(x, m)$ by inclusion-exclusion

$$
\begin{aligned}
P(x, m) & =A(x, m+1)+1 \\
& =\llcorner x\lrcorner-\llcorner x / 2\lrcorner-\left(\sum\left\llcorner x / p_{i}\right\lrcorner-\sum\left\llcorner x / 2 p_{i}\right\lrcorner\right)+\left(\sum\left\llcorner x / p_{i} p_{j}\right\lrcorner-\sum\left\llcorner x / 2 p_{i} p_{j}\right\lrcorner\right)+\ldots \\
& =\langle x / 2\rangle-\sum\left\langle x / p_{i}\right\rangle+\sum\left\langle x / p_{i} p_{j}\right\rangle+\ldots \\
& =\sum_{a}\langle x / 2 a\rangle-\sum_{b}\langle x / 2 b\rangle .
\end{aligned}
$$

Now let $r=\pi(\sqrt{x})$. Then

$$
\begin{aligned}
\pi(x) & =r+A(x, r) \\
& =\pi(\sqrt{x})+P(x, \pi(\sqrt{x})-1
\end{aligned}
$$

Note that

$$
\begin{aligned}
\sqrt{200} & =\sqrt{2 \cdot 100} \\
& =\sqrt{2} \sqrt{100} \\
& \approx 14.142 .
\end{aligned}
$$

Now the odd primes up to 14 are $3,5,7,11$ and 13. Thus

$$
\pi(\sqrt{200})=6 .
$$

On the other hand, one can compute

$$
\begin{aligned}
P(200,5) & =100-(33+20+14+9+8)+(7+5+3+3+3+2+2+1+1+1)-(1+1+1 \\
& =41 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\pi(200) & =\pi(14)+P(200,5)-1 \\
& =6+41-1 \\
& =46
\end{aligned}
$$

6.6.1. (a) We apply partial summation to

$$
\lambda_{n}=p_{n} \quad c_{n}=1 \quad \text { and } \quad f(x)=\frac{1}{x} .
$$

We get

$$
\sum_{p \leq x} \frac{1}{p}=\frac{\pi(x)}{x}-\int_{2}^{x}-\frac{\pi(t)}{t^{2}} \mathrm{~d} t
$$

As

$$
\pi(x)=O\left(\frac{x}{\log \log x}\right)
$$

the first expression on the RHS is certainly $o(1)$. Rearranging we get

$$
\int_{2}^{x} \frac{\pi(t)}{t^{2}} \mathrm{~d} t=\sum_{p \leq x} \frac{1}{p}+o(1) \sim \log \log x
$$

(b) Suppose that $\rho(x) \geq 1+\delta \geq 1$. Then

$$
\begin{aligned}
\log \log x & \sim \int_{2}^{x} \frac{\pi(t)}{t^{2}} \mathrm{~d} t \\
& >\int_{2}^{x} \frac{(1+\delta) t}{t^{2} \log t} \mathrm{~d} t \\
& =(1+\delta) \int_{2}^{x} \frac{\mathrm{~d} t}{t \log t} \\
& =(1+\delta)[\log \log t]_{2}^{x} \\
& >(1+\delta) \log \log x
\end{aligned}
$$

and so $\delta=0$.
Suppose that $\rho(x) \leq 1-\delta \leq 1$. Then

$$
\begin{aligned}
\log \log x & \sim \int_{2}^{x} \frac{\pi(t)}{t^{2}} \mathrm{~d} t \\
& <\int_{2}^{x} \frac{(1-\delta) t}{t^{2} \log t} \mathrm{~d} t \\
& =(1-\delta) \int_{2}^{x} \frac{\mathrm{~d} t}{t \log t} \\
& =(1-\delta)[\log \log t]_{2}^{x} \\
& =(1-\delta)(\log \log x-\log \log 2)
\end{aligned}
$$

so that $\delta=0$.
(c) We apply partial summation to

$$
\lambda_{n}=p_{n} \quad c_{n}=1 \quad \text { and } \quad f(x)=\frac{\log x}{x} .
$$

We get

$$
\sum_{p \leq x} \frac{\log p}{p}=\rho(x)+\int_{2}^{x} \pi(t) \frac{\log t-1}{t^{2}} \mathrm{~d} t
$$

Thus

$$
\log (x)+O\left(\frac{\log x}{\log \log x}\right)+\rho(x)=\int_{2}^{x} \pi(t) \frac{\log t-1}{t^{2}} \mathrm{~d} t
$$

Note that

$$
\rho(x)=O\left(\frac{\log x}{\log \log x}\right) .
$$

If $\rho(t) \geq 1+\delta \geq 1$ then the last integral is at least

$$
(1+\delta) \int_{2}^{x} \frac{\mathrm{~d} t}{t}+O(\log \log x)=(1+\delta)(\log x)+O(\log \log x)
$$

Thus $\delta \leq 0$. Similarly, if $\rho(t) \leq 1-\delta \leq 1$ then the last integral is at most

$$
(1-\delta) \int_{2}^{x} \frac{\mathrm{~d} t}{t}=(1+\delta)(\log x)+O(\log \log x)
$$

Thus $\delta=0$.
6.6.3. We have

$$
\begin{aligned}
x & \sim \sum_{p \leq x} \log p \\
& \leq \sum_{p \leq x} \log x \\
& =\log x \sum_{p \leq x} 1 \\
& =\pi(x) \log x .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
x & \sim \sum_{x^{1-\epsilon} \leq p \leq x} \log p \\
& \geq \sum_{x^{1-\epsilon} \leq p \leq x} \log x^{1-\epsilon} \\
& =(1-\epsilon) \log x \sum_{x^{1-\epsilon} \leq p \leq x} 1 \\
& =(1-\epsilon)\left(\pi(x)-\pi\left(x^{1-\epsilon}\right)\right) \log x \\
& =(1-\epsilon)\left(\pi(x)+O\left(x^{1-\epsilon}\right)\right) \log x .
\end{aligned}
$$

Putting these together, we see that

$$
\pi(x) \sim \frac{x}{\log x}
$$

6.6.4. We apply partial summation to

$$
\lambda_{n}=p_{n} \quad c_{n}=\frac{1}{p_{n}} \quad \text { and } \quad f(x)=\frac{1}{\log x} .
$$

Then

$$
\begin{aligned}
\sum_{p \leq x} \frac{1}{p \log p} & =\frac{\sum_{p \leq x} \frac{1}{p}}{\log x}+\int_{2}^{x} \frac{\sum_{p \leq t} \frac{1}{p}}{t \log ^{2} t} \mathrm{~d} t \\
& =O\left(\frac{\log \log x}{\log x}\right)+\int_{2}^{x} \frac{\sum_{p \leq t} \frac{1}{p}}{t \log ^{2} t} \mathrm{~d} t
\end{aligned}
$$

Note that the last integral converges, since

$$
\sum_{p \leq t} \frac{1}{p} \sim \log \log t
$$

and the integral of

$$
\frac{\log \log t}{t \log ^{2} t}
$$

converges.
6.6.6. (a) We have

$$
\begin{aligned}
\sum_{k=m}^{n} A_{k}\left(b_{k}-b_{k-1}\right)+A_{n} b_{n+1}-A_{m-1} b_{m} & =\sum_{k=m}^{n} A_{k} b_{k}-\sum_{k=m}^{n} A_{k} b_{k-1}+A_{n} b_{n+1}-A_{m-1} b_{m} \\
& =\sum_{k=m}^{n} A_{k} b_{k}-\sum_{k=m+1}^{n+1} A_{k-1} b_{k}+A_{n} b_{n+1}-A_{m-1} b_{m} \\
& =\sum_{k=m}^{n} A_{k} b_{k}-\sum_{k=m}^{n} A_{k-1} b_{k} \\
& =\sum_{k=m}^{n}\left(A_{k}-A_{k-1}\right) b_{k} \\
& =\sum_{k=m}^{n} a_{k} b_{k}
\end{aligned}
$$

(b) Suppose that $\sum a_{n}$ converges and b_{1}, b_{2}, \ldots is monotonic and bounded. Possibly passing to the tail of the sequence b_{1}, b_{2}, \ldots we may assume that every element of b_{1}, b_{2}, \ldots has the same sign. Possibly replacing b_{i} by $-b_{i}$ we may assume that $b_{i} \geq 0$. Suppose that b is an upper bound for b_{1}, b_{2}, \ldots Then

$$
\left|\sum_{k=m}^{n} a_{k} b_{k}\right| \leq b\left|\sum_{k=m}^{n} a_{k}\right|
$$

so that the partial sums of $\sum a_{k} b_{k}$ go to zero as m goes to infinity. Thus $\sum a_{k} b_{k}$ converges.
Now suppose that $\sum a_{n}$ has bounded partial sums and b_{1}, b_{2}, \ldots tends monotonically to zero. Then $A_{n} b_{n+1}$ tends to zero so that $A_{n} b_{n+1}-$
$A_{m-1} b_{m}$ converges to zero as m and n tend to infinity. Thus to show that the partial sums of $\sum a_{k} b_{k}$ go to zero as we increase m, it suffices to prove that the partial sums of $\sum A_{k}\left(b_{k}-b_{k-1}\right)$ go to zero. Possibly replacing b_{k} by $-b_{k}$ we may assume that b_{1}, b_{2}, \ldots is monotonic decreasing. Let $\alpha_{k}=b_{k}-b_{k-1} \geq 0, \beta_{k}^{+}=\lim \sup _{l \geq k} A_{l}$ and $\beta_{k}^{-}=\liminf { }_{l \geq k} A_{l}$.
Then $\sum \alpha_{k}$ is absolutely convergent and $\beta_{k}^{ \pm}$is bounded and monotonic. Thus $\sum \alpha_{k} \beta_{k}^{ \pm}$converges by what we already proved.
On the other hand, the partial sums of $\sum A_{k}\left(b_{k}-b_{k-1}\right)$ are bounded from above by the partial sums of $\sum \alpha_{k} \beta_{k}^{+}$and from below by $\sum \alpha_{k} \beta_{k}^{-}$. (c) If we put $a_{k}=(-1)^{k}$ and $b_{k}=k^{-s}$ then

$$
\left|\sum_{k=m}^{n} a_{k}\right| \leq 1
$$

so that $\sum a_{k}$ has bounded partial sums and b_{1}, b_{2}, \ldots tends monotonically to zero. Thus

$$
\sum_{k}(-1)^{k} k^{-s}=\sum a_{k} b_{k}
$$

converges by (b).
(d) Let $a_{k}=(k / p)$ and $b_{k}=k^{-s}$. Note that

$$
\sum_{k=0}^{p-1}(k / p)=0
$$

since half of the numbers between 1 and $p-1$ are squares. Thus $\sum a_{k}$ has bounded partial sums. As b_{1}, b_{2}, \ldots tends monotonically to zero, it follows that

$$
\sum_{k}(l / p) k^{-s}=\sum a_{k} b_{k}
$$

converges by (b).
(e) Let $c_{k}=a_{k} k^{-s_{0}}$ and $d_{k}=k^{s_{0}-s}$. Then $\sum c_{k}$ converges and d_{1}, d_{2}, \ldots is monotonic and bounded. Thus

$$
\sum a_{k} k^{-s}=\sum c_{k} d_{k}
$$

converges for all $s \geq s_{0}$.
Similarly if we $c_{k}=a_{k} k^{-s_{0}}$ and $d_{k}=k^{s_{0}-s} \log k$. Then $\sum c_{k}$ converges and d_{1}, d_{2}, \ldots is eventually monotonic and bounded for $s>s_{0}$. Thus

$$
\sum a_{k}(\log k) k^{-s}=\sum c_{k} d_{k}
$$

converges for all $s>s_{0}$.
6.6.7. Note that if we integrate by parts then we get

$$
\begin{aligned}
\int_{0}^{x} \frac{\mathrm{~d} t}{\log ^{n} t} & =\int_{0}^{x} 1 \cdot \frac{\mathrm{~d} t}{\log ^{n} t} \\
& =\left[\frac{t}{\log ^{n} t}\right]_{0}^{x}+n \int_{0}^{x} \frac{t \mathrm{~d} t}{t \log ^{n+1} t} \\
& =\frac{x}{\log ^{n} x}+n \int_{0}^{x} \frac{\mathrm{~d} t}{\log ^{n+1} t}
\end{aligned}
$$

It follows by induction that

$$
\operatorname{li}(x)=\frac{x}{\log x}+\frac{1!x}{\log ^{2} x}+\frac{2!x}{\log ^{3} x}+\cdots+\frac{(n-1)!x}{\log ^{n} x}+n!\int_{0}^{x} \frac{\mathrm{~d} t}{\log ^{n+1} t}
$$

Now to estimate the last integral, we break it into three parts.

$$
\int_{0}^{x} \frac{\mathrm{~d} t}{\log ^{n+1} t}=\int_{0}^{2} \frac{\mathrm{~d} t}{\log ^{n+1} t}+\int_{2}^{\sqrt{x}} \frac{\mathrm{~d} t}{\log ^{n+1} t}+\int_{\sqrt{x}}^{x} \frac{\mathrm{~d} t}{\log ^{n+1} t}
$$

The first integral is constant. The second is over an interval of length bounded by \sqrt{x} of a function bounded by a constant $\left(\frac{1}{\log ^{n+1} 2}\right)$ and so the second integral is $O(\sqrt{x})$. The third integral is over an interval of length bounded by x of a function which is bounded by

$$
\frac{1}{\log ^{n+1} \sqrt{x}}=O\left(\frac{1}{\log ^{n+1} x}\right)
$$

Thus the last integral is

$$
O\left(\frac{x}{\log ^{n+1} x}\right)
$$

Therefore

$$
\left|n!\int_{0}^{x} \frac{\mathrm{~d} t}{\log ^{n+1} t}\right|=O\left(\frac{x}{\log ^{n+1} x}\right)
$$

and so the result follows.
6.7.1. We have

$$
\frac{-1 / p}{1-1 / p}=-\frac{1}{p-1} \leq \log \left(1-\frac{1}{p}\right) \leq-\frac{1}{p}
$$

Note the difference between the upper and lower bound is $1 / p(p-1)$. Thus

$$
\begin{aligned}
\sum_{p \leq x} \log \left(1-\frac{1}{p}\right) & =-\sum_{p} \frac{1}{p}+\frac{a_{p}}{p(p-1)} \\
& =-\log \log x+C+O\left(\frac{1}{\log x}\right)+\sum \frac{a_{p}}{p(p-1)} \\
& =-\log \log x+B+O\left(\frac{1}{\log x}\right)
\end{aligned}
$$

where $a_{p} \in(0,1]$ so that the sum is convergent.
Now suppose that $f(x)$ tends to zero as x tends to infinity. We apply Cauchy's mean value theorem to $e^{f(x)}$ and $f(x)$ over the interval $\left[x, x_{1}\right]$. It follows that we can find $a \in\left(x, x_{1}\right)$ such that

$$
e^{f(a)}=\frac{e^{f\left(x_{1}\right)}-e^{f(x)}}{f\left(x_{1}\right)-f(x)}
$$

If we let x_{1} go to infinity, we get

$$
e^{f(a)}=\frac{1-e^{f(x)}}{-f(x)}
$$

so that

$$
e^{f(x)}=1+f(x) e^{f(a)}
$$

As $a \geq x$, and $f(x)$ is monotonic decreasing, it follows that $e^{f(a)}$ is bounded from above. Thus

$$
e^{f(x)}=1+O(f(x))
$$

Let

$$
f(x)=\sum_{p} \log \left(1-\frac{1}{p}\right)+\log \log x-B
$$

If we exponentiate then we get

$$
e^{f(x)}=1+O\left(\frac{1}{\log x}\right)
$$

Thus, taking two terms over to the other side, we get

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)=\frac{e^{-B}}{\log x}+O\left(\frac{1}{\log ^{2} x}\right)
$$

6.7.2. (a) Suppose not. Then we may find $\epsilon>0$ and n_{0} such that if $n \geq n_{0}$ then $p_{n+1} \geq(1+\epsilon) p_{n}$. By induction it follows that

$$
p_{n} \geq(1+\epsilon)^{n-n_{0}} p_{n_{0}}
$$

Thus

$$
\log p_{n} \geq\left(n-n_{0}\right) \log (1+\epsilon)+O(1)
$$

On the other hand,

$$
p_{n}<c_{4} n \log n,
$$

so that

$$
\log p_{n}<\log n+\log \log n+O(1)
$$

a contradiction.
(b) By Theorem 8.2 we may find a such that

$$
\left|\sum_{p \leq x} \frac{\log p}{p}-\log x\right|<a
$$

for $x>2$. Let $c=e^{2 a}$. Suppose that there is no prime between x and $c x$. Then

$$
\begin{aligned}
\left|\sum_{p \leq c x} \frac{\log p}{p}-\log c x\right| & =\left|\sum_{p \leq x} \frac{\log p}{p}-\log x-2 a\right| \\
& >|2 a-a| \\
& =a
\end{aligned}
$$

a contradiction.

