
MODEL ANSWERS TO THE THIRD HOMEWORK

6.4.3. Note that
d

dx
η(x) = 1,

so that integrating by parts, we have∫ k+1/2

k

f(x) dx =

[
η(x)f(x)

]k+1/2

k

−
∫ k+1/2

k

η(x)f ′(x) dx

= η(k + 1/2)f(k + 1/2)− η(k)f(k)−
∫ k+1/2

k

η(x)f ′(x) dx

= f(k)/2−
∫ k+1/2

k

η(x)f ′(x) dx

and∫ k+1

k+1/2

f(x) dx =

[
η(x)f(x)

]k+1

k+1/2

−
∫ k+1

k+1/2

η(x)f ′(x) dx

= η(k + 1)f(k + 1)− η(k + 1/2)f(k)−
∫ k+1

k+1/2

η(x)f ′(x) dx

= f(k + 1)/2−
∫ k+1

k+1/2

η(x)f ′(x) dx

Therefore∫ n

m

f(x) dx =
n−1∑
k=m

∫ k+1/2

k

f(x) dx+

∫ k+1

k+1/2

f(x) dx

=
n−1∑
k=m

f(k)/2−
∫ k+1/2

k

η(x)f ′(x) dx+ f(k + 1)/2−
∫ k+1

k+1/2

η(x)f ′(x) dx

=
1

2

n−1∑
k=m

f(k + 1) + f(k)−
∫ k+1

k

η(x)f ′(x) dx

=
n∑

k=m

f(x)− f(m)/2− f(n)/2−
∫ n

m

η(x)f ′(x) dx.
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Thus

n∑
k=m

f(x) =

∫ n

m

f(x) dx+ f(m)/2 + f(n)/2 +

∫ n

m

η(x)f ′(x) dx.

(a) Note that ∣∣∣∣∫ ∞
n

η(x)

x2
dx

∣∣∣∣ ≤ ∫ ∞
n

dx

x2

=

[
−1

x

]∞
n

=
1

n
.

Therefore, if we put

f(x) =
1

x
,

and m = 1 then we get

n∑
k=1

1

k
=

∫ n

1

dx

x
+

1

2
+

1

2n
+

∫ n

1

−η(x)

x2
dx

= log n+ γ +O

(
1

n

)
.

(b) Note that ∣∣∣∣∫ ∞
n

η(x)

xα−1
dx

∣∣∣∣ ≤ ∫ ∞
n

dx

xα−1

=

[
−x

−α

α

]∞
n

= O(n−α).

Therefore, if we put

f(x) = x−α

and m = 1 then we get

n∑
k=1

k−α =

∫ n

1

dx

xα
+ 1−α/2 + n−α/2 +

∫ n

1

−η(x)

xα−1
dx

=
n1−α

1− α
+ cα +O(n−α).

2



(c) Note that ∣∣∣∣∫ n

1

η(x)

x
dx

∣∣∣∣ ≤ ∫ n

1

dx

x

=

[
log x

]n
1

= log n.

Therefore, if we put

f(x) = log x.

and m = 1 then we get

log n! =
n∑
k=1

log k

=

∫ n

1

log x dx+ 1/2 log 1 + 1/2 log n+

∫ n

1

η(x)

x
dx

= n log n− n+ 1 + 1/2 log n+O(log n)

= (n+ 1/2) log n− n+O(log n).

6.4.4. We have

li(x) =

∫ x

2

dt

log t

=

[
t

log t

]x
2

+

∫ x

2

dt

log2 t

≤ x

log x
− 2

log 2
+

∫ √x
2

dt

log2 t
−
∫ x

√
x

dt

log2 t

≤ x

log x
+
√
x

1

log 2
+ x

1

log2√x

=
x

log x
+
√
x

1

log 2
+ 4x

1

log2 x

=
x

log x
+O

(
x

log2 x

)
.

6.4.5. Imagine approximating the area under the graph of y = f(x)
between x = 1 and x = n. If we draw n− 1 rectangles of heights f(1),
f(2), . . . , f(n− 1) over the n− 1 intervals [1, 2], [2, 3], . . . , [n− 1, n],
then their area is bigger than the area under the graph, as f(x) is
decreasing. But if we draw rectangles draw n− 1 rectangles of heights
f(2), f(3), . . . , f(n) over the same intervals then their area is smaller
than the area under the graph.
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It follows that
n∑
k=2

f(x) ≤
∫ n

1

f(t) dt ≤
n−1∑
k=1

f(x).

Since the difference between the third and first term is f(1)−f(n), the
difference between

n∑
k=1

f(x) and

∫ n

1

f(t) dt

is bounded. As the second term tends to infinity, it follows that
n∑
k=1

f(x) ∼
∫ n

1

f(t) dt.

Now suppose that f(x) = o(g(x)). Then∣∣∣∣∫ n

1

f(t) dt

∣∣∣∣ ≤ ∫ n

1

εg(t) dt

= ε

∫ n

1

g(t) dt,

for all ε > 0, so that ∫ n

1

f(t) dt = o

(∫ n

1

g(t) dt

)
.

We have

lim
n→∞

∑n
k=1 f(x)∑n
k=1 g(x)

= lim
n→∞

∑n
k=1 f(x)∫ n
1
f(t) dt

·
∫ n
1
f(t) dt∫ n

1
g(t) dt

·
∫ n
1
g(t) dt∑n
k=1 g(x)

= lim
n→∞

∑n
k=1 f(x)∫ n
1
f(t) dt

· lim
n→∞

∫ n
1
f(t) dt∫ n

1
g(t) dt

· lim
n→∞

∫ n
1
g(t) dt∑n
k=1 g(x)

= 1 · 0 · 1
= 0.

Thus
n∑
k=1

f(x) = o

(
n∑
k=1

g(x)

)
.

6.4.6. Note that if g(x) = (log log x)2 then

a log log x = o(g(x)) and g(x) = o(δ log x).

If we put f(x) = eg(x) and we exponentiate these inequalities we get

loga x = o(f(x)) and f(x) = o(xδ).
4



On the other hand, f(x) is increasing as g(x) is increasing, so that
f ′(x) > 0.
6.4.9. The idea is to splice together copies of logn x over intervals. To
get continuity at the endpoints of the intervals we need to rescale (or
shift). But if we do that we need to make the intervals longer and
longer to make sure the limit of f(x) as x increases is infinity.
Define sequences of positive real numbers a1, a2, . . . and x1, x2, . . . re-
cursively by the rule:

x1 = 1 an−1 logn−1 xn = n

a1 = 1 an logn xn = n.

In the second equation we suppose that an−1 is known and we solve for
xn. Note that logn x is a composition of invertible functions, so that it
is invertible. In the fourth equation we suppose that xn is known and
we solve for an (this is easy).
Let f(x) be the function, defined for x ≥ 1, by the rule

f(x) = an logn x when x ∈ [xn−1, xn).

The sequences a1, a2, . . . and x1, x2, . . . are chosen so that f(xn) = n
and f(x) is continuous.
Indeed as xn ∈ [xn, xn+1) we have

f(xn) = an+1 logn+1 xn

= n.

On the other hand, if we check to see that happens as x approaches xn
from below, we see that

lim
x→x−n

f(x) = an−1 logn−1 x

= an−1 logn−1 xn

= n,

as x ∈ [xn−1, xn) if x is approaching xn from below.
Note that f(xn) = n and f(x) is equal to logn x until f(x) = n + 1.
Thus x1, x2, . . . is unbounded.
Note that f(x) is monotonic increasing, since logn x is increasing, for all
n. As f(xn) = n and limn→∞ xn =∞ it follows that limx→∞ f(x) =∞.
As an logn xn = an−1 logn−1 xn and logn grows slower than logn−1, it
follows that f(x) ≤ an logn x for all x ≥ xn. Thus f(x) = o(logn(x)).
6.5.1. We follow the argument of the sieve of Eratosthenes given in
§5. Note that if m is not square-free then m must be divisible by the
square of a prime. Let ψ(x) be the number of square-free integers up
x.
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Let B(x, r) be the number of integers up to x not divisible by the
square of one of the first r primes. We want to estimate B(x, r). Let
Mi be the set of integers from 1 to n which are multiples of p2i . Let
Mij be the set of integers from 1 to n which are multiples of both p2i
and p2j . As pi and pj are coprime,

Mij = Mi ∩Mj.

Note that

|Mi| = x
x

p2i
y and |Mij| = x

x

p2i p
2
j

y,

and so on. It follows by inclusion-exclusion that

B(x, r) = xxy−
r∑
i=1

x
x

p2i
y +

∑
i 6=j≤r

x
x

p2i p
2
j

y + · · ·+ (−1)rx
x

p21p
2
2 . . . p

2
r

y.

Suppose that we approximate the RHS by simply ignoring all of the
round downs,

x−
r∑
i=1

x

p2i
+
∑
i 6=j≤r

x

p2i p
2
j

+ · · ·+ (−1)r
x

p21p
2
2 . . . p

2
r

= x
r∏
i=1

(
1− 1

p2i

)
.

The worse case scenario for the error is

1 +

(
r

1

)
+

(
r

2

)
+ · · ·+

(
r

r

)
= 2r.

Thus

ψ(x) ≤ r + x
r∏
i=1

(
1− 1

p2i

)
+ 2r

≤ x

r∏
i=1

(
1− 1

p2i

)
+ 2r+1

≤ x
r∏
i=1

(
1− 1

p2i

)
+O(

x

log log x
),

where we take r = log x.
Now ∏

p>y

(
1− 1

p2

)−1
=
∏
p>y

(
1 +

1

p2
+

1

p4
+ . . .

)
,

If we expand the product on the RHS we get

1 +
∑

p|k =⇒ p>y

1

k2
≥ y + 1

y
,
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where we used the fact that
∑
k−2, as a Riemman sum for 1/x2, gives

a lower bound for the area under the graph from y to ∞. Thus
r∏
i=1

(
1− 1

p2i

)
=
∏
p

(
1− 1

p2

)
·
∏
p>pr

(
1− 1

p2

)−1
>
pr + 1

pr

∏
p

(
1− 1

p2

)
=
∏
p

(
1− 1

p2

)
+

1

pr

∏
p

(
1− 1

p2

)
=
∏
p

(
1− 1

p2

)
+

1

log x

∏
p

(
1− 1

p2

)
=
∏
p

(
1− 1

p2

)
+ o(x).
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