MODEL ANSWERS TO THE SECOND HOMEWORK

6.1.10. If $x \in S$ then let $\chi_{x}: S \longrightarrow \mathbb{C}$ be the function

$$
\chi_{x}(y)= \begin{cases}1 & \text { if } y=x \\ 0 & \text { otherwise }\end{cases}
$$

Note that

$$
f=\sum_{x \in X} f(x) \chi_{x}
$$

Indeed both sides are functions $S \longrightarrow \mathbb{C}$ and it is easy to see they have the same effect on every element of S.
Thus we are reduced to the case $f=\chi_{x}$. In this case, the fact that both sides are equal is shown in the proof of inclusion-exclusion.
Now suppose that S consists of N real numbers. Note that if $i<j$ then

$$
S_{i} \cap S_{j}=S_{i} \quad \text { so that } \quad \cap_{j=1}^{k} S_{i_{j}}=S_{m}
$$

where m is the smallest index. Note also that

$$
\begin{aligned}
\sum_{s \in S_{i}} f(s) & =\sum_{l=1}^{i} f\left(x_{l}\right) \\
& =f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{i}\right) \\
& =x_{1}+\left(x_{2}-x_{1}\right)+\cdots+\left(x_{i}-x_{i-1}\right) \\
& =x_{i}
\end{aligned}
$$

the largest element of S_{i}.
The union of the sets S_{i} is the whole of S, so the LHS is zero. The first sum on the RHS is X_{N}. If one brings this over to the LHS then this gives a proof of the formula (2.4.4.a).
6.2.3. We check that both sides of this equation are additive. If x and y are any positive reals then

$$
\log x y=\log x+\log y
$$

so that the LHS is certainly additive. For the RHS, note that the only non-zero terms of the sum

$$
\sum_{d \mid n} \Lambda(d)
$$

are when d is a power of a prime. If m and n are coprime and d divides $m n$ then we can write $d=d_{1} d_{2}$ where d_{1} divides m and d_{2} divides n.

If d is a pure power of a prime then one of d_{1} and d_{2} is one and the other is equal to d. It follows that the RHS is additive as well. Thus we may assume that $n=p^{e}$ is a power of a prime p. In this case

$$
\begin{aligned}
\sum_{d \mid n} \Lambda(d) & =\sum_{i=0}^{e} \Lambda\left(p^{i}\right) \\
& =\sum_{i=1}^{e} \log p \\
& =e \log p \\
& =\log p^{e} \\
& =\log n .
\end{aligned}
$$

By Möbius inversion, we have

$$
\begin{aligned}
\Lambda(n) & =\sum_{d \mid n} \mu(d) \log (n / d) \\
& =\sum_{d \mid n} \mu(d)(\log n-\log d) \\
& =\log n \sum_{d \mid n} \mu(d)-\sum_{d \mid n} \mu(d) \log d \\
& =\log n M(n)-\sum_{d \mid n} \mu(d) \log d \\
& =-\sum_{d \mid n} \mu(d) \log d
\end{aligned}
$$

Thus

$$
\sum_{d / n} \mu(d) \log d=-\Lambda(n)
$$

6.2.4. Note that $\mu(n)$ is multiplicative and the product of multiplicative functions is multiplicative, so that the LHS is multiplicative.
On the other hand, if m and n are coprime then the prime factors of $m n$ are simply the prime factors of m and n. It is easy to see that the RHS is also multiplicative.

Thus we are reduced to the case when $n=p^{e}$ is the power of a prime p. In this case

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) f(d) & =\sum_{i=0}^{e} \mu\left(p^{i}\right) f\left(p^{i}\right) \\
& =\mu(1) f(1)+\mu(p) f(p)+0+\cdots+0 \\
& =1-f(p)
\end{aligned}
$$

6.2.7. We have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{s}} \cdot \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} & =\sum_{m=1}^{\infty} \frac{1}{m^{s}} \cdot \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{s}} \frac{\mu(n)}{n^{s}} \\
& =\sum_{m=1}^{\infty} \sum_{d=1}^{\infty} \frac{\mu(d)}{(m d)^{s}} \\
& =\sum_{n=1}^{\infty} \sum_{d \mid n} \frac{\mu(d)}{n^{s}} \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{s}} \sum_{d \mid n} \mu(d) \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{s}} M(n) \\
& =1,
\end{aligned}
$$

where we used the fact that both

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

are absolutely convergent, so that we can rearrange the terms of the sums.
6.2.8. (a) Let I be the set of natural numbers from one to n and let I^{k} be the Cartesian product of I with itself k times, so that I^{k} has cardinality n^{k}. Let
$C_{d}=\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in I^{k} \mid\right.$ the greatest common divisor of $a_{1}, a_{2}, \ldots, a_{k}$ and n is $\left.d\right\}$.
Note that C_{d} is a partition of I^{k} indexed by the divisors of n. If $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in C_{d}$ then a_{i} is divisible by d so that $a_{i}=b_{i} d$. In this
case $\left(b_{1}, b_{2}, \ldots, b_{k}\right) \in J_{k}(n / d)$, so that

$$
\left|C_{n / d}\right|=J_{k}(d) .
$$

Thus

$$
\begin{aligned}
n^{k} & =\left|I^{k}\right| \\
& =\sum_{d \mid n}\left|C_{n / d}\right| \\
& =\sum_{d \mid n} J_{k}(d) .
\end{aligned}
$$

(b) As $F(n)=n^{k}$ is multiplicative, it follows that $J_{k}(n)$ is multiplicative.
(c) We already showed that the LHS is multiplicative in (b). The RHS is the product of n^{k}, which is multiplicative and the other term is also multiplicative. Thus we are reduced to the case when $n=p^{e}$ is a power of a prime.
In this case the condition that the greatest common divisor is coprime to n is the same as the condition that the greatest common divisor is not divisible by p. The number of k-tuples whose greatest common divisor is divisible by p is

$$
(n / p)^{k}
$$

Thus the number of k-tuples whose greatest common divisor is not divisible by p is

$$
\begin{aligned}
J_{k}\left(p^{e}\right) & =n^{k}-(n / p)^{k} \\
& =n^{k}\left(1-\frac{1}{p^{k}}\right) \\
& =n^{k} \prod_{p \mid n}\left(1-\frac{1}{p^{k}}\right) .
\end{aligned}
$$

6.2.9. We have

$$
\begin{aligned}
\sum_{d_{1} d_{2}=m, e_{1} e_{2}=n} \mu\left(d_{1}\right) \mu\left(e_{1}\right) F\left(d_{2}, e_{2}\right) & =\sum_{d_{1} d_{2}=m, e_{1} e_{2}=n} \mu\left(d_{1}\right) \mu\left(e_{1}\right) \sum_{d\left|d_{2}, e\right| e_{2}} f(d, e) \\
& =\sum_{d_{1} d\left|m, e_{1} e\right| n} \mu\left(d_{1}\right) \mu\left(e_{1}\right) f(d, e) \\
& =\sum_{d|m, e| n} f(d, e) \sum_{d_{1}\left|m / d, e_{1}\right| n / e} \mu\left(d_{1}\right) \mu\left(e_{1}\right) \\
& =\sum_{d|m, e| n} f(d, e) \sum_{d_{1} \mid m / d} \mu\left(d_{1}\right) \sum_{e_{1} \mid n / e} \mu\left(e_{1}\right) \\
& =\sum_{d|m, e| n} f(d, e) M(m / d) M(n / e) \\
& =f(m, n) .
\end{aligned}
$$

6.3.2. Note that

$$
\llcorner 2 x\lrcorner-2\llcorner x\lrcorner
$$

is either 0 or 1 . On the other hand,

$$
\begin{aligned}
\llcorner x\lrcorner+\llcorner y\lrcorner+1 & =\llcorner x+\llcorner y\lrcorner+1\lrcorner \\
& \geq\llcorner x+y\lrcorner .
\end{aligned}
$$

Suppose that

$$
\llcorner 2 x\lrcorner-2\llcorner x\lrcorner=1 \text {. }
$$

We have

$$
\begin{aligned}
\llcorner 2 x\lrcorner+\llcorner 2 y\lrcorner & \geq 2\llcorner x\lrcorner+2\llcorner y\lrcorner+1 \\
& =\llcorner x\lrcorner+\llcorner y\lrcorner+\llcorner x\lrcorner+\llcorner y\lrcorner+1 \\
& \geq\llcorner x\lrcorner+\llcorner y\lrcorner+\llcorner x+y\lrcorner .
\end{aligned}
$$

By symmetry we are also done if

$$
\llcorner 2 y\lrcorner-2\llcorner y\lrcorner=1 \text {. }
$$

Thus we may assume that

$$
\llcorner 2 x\lrcorner-2\llcorner x\lrcorner=0 \quad \text { and } \quad\llcorner 2 y\lrcorner-2\llcorner y\lrcorner=0 .
$$

Note that if we multiply

$$
x=\llcorner x\lrcorner+\{x\}
$$

by 2 we get

$$
2 x=2\llcorner x\lrcorner+2\{x\}
$$

so that

$$
\llcorner 2 x\lrcorner=2\llcorner x\lrcorner+\llcorner 2\{x\}\lrcorner,
$$

and so $2\{x\}<1$, that is, $\{x\}<{ }_{5}^{1 / 2}$.

In this case, since

$$
x+y=\llcorner x\lrcorner+\llcorner y\lrcorner+\{x\}+\{y\}
$$

and $\{x\}+\{y\}<1$, we see that

$$
\llcorner x+y\lrcorner=\llcorner x\lrcorner+\llcorner y\lrcorner .
$$

Thus

$$
\begin{aligned}
\llcorner 2 x\lrcorner+\llcorner 2 y\lrcorner & =2\llcorner x\lrcorner+2\llcorner y\lrcorner \\
& =\llcorner x\lrcorner+\llcorner y\lrcorner+\llcorner x\lrcorner+\llcorner y\lrcorner \\
& =\llcorner x\lrcorner+\llcorner y\lrcorner+\llcorner x+y\lrcorner .
\end{aligned}
$$

6.3.4. (a) One direction is clear. If

$$
x=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}},
$$

then x is rational, since the rationals are closed under addition.
Now suppose that x is rational. Then we may write

$$
x=\frac{p}{q}
$$

where p and $q>0$ are coprime integers. We would like to write down an invariant that goes down at each step.
It is tempting to try to use the denominator. If we start with $x=2 / 3$ then $a_{1}=1 / 2$ and $x_{2}=1 / 6$ and in this case the denominator increases. It is tempting to believe that perhaps the denominator always divides q !. But if $x=3 / 7$ then we get

$$
\frac{3}{7}=\frac{1}{3}+\frac{1}{11}+\frac{1}{231},
$$

and 231 does not divide 7 !. There does not seem to be a simple invariant only depending on the denominator that goes down.
In fact it is easy to see that the numerator always goes down. In fact if we write $q=c p+d$, where $0 \leq d \leq p-1$ then $c \geq 1$ as $x \leq 1$ implies $q \geq p$. We claim that $a_{1}=c+1$. Indeed

$$
\begin{aligned}
x-\frac{1}{c} & =\frac{p}{q}-\frac{1}{c} \\
& =\frac{p c-q}{q c} \\
& =\frac{-d}{q c} \\
& <0,
\end{aligned}
$$

so that $a_{1} \geq c+1$. But

$$
\begin{aligned}
x-\frac{1}{c+1} & =\frac{p}{q}-\frac{1}{c+1} \\
& =\frac{p(c+1)-q}{q(c+1)} \\
& =\frac{p-d}{q(c+1)} \\
& \geq 0
\end{aligned}
$$

Thus $a_{1}=c+1$ and

$$
x_{1}=\frac{p-q}{q(c+1)} .
$$

It follows that the numerator of x_{1} is at most $p-q<p$.
Thus the algorithm terminates in at most p steps if x has numerator p.
(b) Note that the sum of the reciprocals of b_{1}, b_{2}, \ldots converges by assumption. Let

$$
x=\sum_{n=1}^{\infty} \frac{1}{b_{n}} .
$$

We show by induction that if we choose the natural numbers a_{1}, a_{2}, \ldots as in part (a) then in fact $a_{n}=b_{n}$ for all n. Suppose that we have proved this result up to n. Clearly

$$
\begin{aligned}
x-\sum_{k \leq n} \frac{1}{a_{k}} & =x-\sum_{k \leq n} \frac{1}{b_{k}} \\
& =\sum_{k>n} \frac{1}{b_{k}} \\
& >\frac{1}{b_{n+1}},
\end{aligned}
$$

so that $a_{n+1}<b_{n+1}$. On the other hand,

$$
\begin{aligned}
x-\sum_{k \leq n} \frac{1}{a_{k}} & =x-\sum_{k \leq n} \frac{1}{b_{k}} \\
& =\sum_{k>n} \frac{1}{b_{k}} \\
& =\frac{1}{b_{n+1}}+\sum_{k>n+1} \frac{1}{b_{k}} \\
& <\frac{1}{b_{n+1}}+\frac{1}{b_{n+1}-1}-\frac{1}{b_{n+1}} \\
& =\frac{1}{b_{n+1}-1} .
\end{aligned}
$$

Thus $a_{n+1} \geq b_{n+1}$. It follows that $a_{n+1}=b_{n+1}$ and this completes the induction.
As $a_{1}, a_{2}, \ldots=b_{1}, b_{2}, \ldots$ is an infinite sequence, it follows that the algorithm never terminates and so x is irrational.
Let $b_{k}=2^{3^{k}}+1$. We have

$$
\begin{aligned}
\sum_{n \geq k} \frac{1}{b_{n}} & =\sum_{n \geq k} \frac{1}{2^{3^{n}}+1} \\
& \leq \sum_{n \geq k} \frac{1}{2^{3^{n}}} \\
& \leq \frac{1}{2^{3^{k}}} \sum_{n \geq 0} \frac{1}{2^{n}} \\
& =2 \frac{1}{2^{3^{k}}} \\
& \leq \frac{1}{2^{3^{(k-1)}}} \\
& =\frac{1}{b_{k-1}-1} .
\end{aligned}
$$

Thus

$$
\sum\left(2^{3^{k}}+1\right)^{-1}
$$

is irrational.
6.3.6. (a) We prove that

$$
\frac{(a b)!}{a!(b!)^{a}}
$$

is a natural number, for all natural numbers a and b. We proceed by induction on a.

If $a=1$ then

$$
\begin{aligned}
\frac{(a b)!}{a!(b!)^{a}} & =\frac{b!}{1!(b!)^{1}} \\
& =1
\end{aligned}
$$

Now suppose the result holds for a.

$$
\begin{aligned}
\frac{((a+1) b)!}{(a+1)!(b!)^{a+1}} & =\frac{(a b)!}{a!(b!)^{a}} \frac{(a+1) b((a+1) b-1)!}{(a b)!(a+1) b!} \\
& =\frac{(a b)!}{a!(b!)^{a}} \frac{((a+1) b-1)!}{(a b)!(b-1)!} \\
& =\frac{(a b)!}{a!(b!)^{a}}\binom{((a+1) b-1)!}{(b-1)!} .
\end{aligned}
$$

The first term is an integer by induction and the second term is an integer, since it is a binomial.
(b) Pick a prime p. The exponent of the largest power of p dividing (2a)! is

$$
\left\llcorner\frac{2 a}{p}\right\lrcorner+\left\llcorner\frac{2 a}{p^{2}}\right\lrcorner+\ldots
$$

Thus the exponent of the largest power of p dividing $(2 a)!(2 b)$! is

$$
\left\llcorner\frac{2 a}{p}\right\lrcorner+\left\llcorner\frac{2 b}{p}\right\lrcorner+\left\llcorner\frac{2 a}{p^{2}}\right\lrcorner+\left\llcorner\frac{2 b}{p^{2}}\right\lrcorner+\ldots
$$

On the other hand the exponent of the largest power of p dividing $a!b!(a+b)$! is

$$
\left\llcorner\frac{a}{p}\right\lrcorner+\left\llcorner\frac{b}{p}\right\lrcorner+\left\llcorner\frac{a+b}{p}\right\lrcorner+\left\llcorner\frac{a}{p^{2}}\right\lrcorner+\left\llcorner\frac{b}{p^{2}}\right\lrcorner+\left\llcorner\frac{a+b}{p^{2}}\right\lrcorner+\ldots
$$

The difference of the exponent of the numerator and the denominator is then a sum of terms of the form

$$
\left\llcorner\frac{2 a}{p^{k}}\right\lrcorner+\left\llcorner\frac{2 b}{p^{k}}\right\lrcorner-\left\llcorner\frac{a}{p^{k}}\right\lrcorner-\left\llcorner\frac{b}{p^{k}}\right\lrcorner-\left\llcorner\frac{a+b}{p^{k}}\right\lrcorner .
$$

By (6.3.2) applied to $\alpha=a / p^{k}$ and $\beta=b / p^{k}$ this is non-negative. But then

$$
\frac{(2 a)!(2 b)!}{a!b!(a+b)!}
$$

is a natural number, for all natural numbers a and b (since it's denominator is not divisible by any prime).
6.4.2. Note that

$$
\begin{aligned}
\sum_{i, j=1: p_{i}<p_{j}}^{\infty}\left\llcorner\frac{x}{p_{i} p_{j}}\right\lrcorner & =\sum_{p_{i} p_{j} \leq x, p_{i}<p_{j}}\left\llcorner\frac{x}{p_{i} p_{j}}\right\lrcorner \\
& \leq \sum_{p_{i} p_{j} \leq x, p_{i}<p_{j}} \frac{x}{p_{i} p_{j}}-E,
\end{aligned}
$$

where

$$
E \leq \sum_{p_{i} p_{j} \leq x, p_{i}<p_{j}} 1
$$

The term on the RHS is the number of ways to pick two primes p_{i}, p_{j} such that $p_{i}<p_{j}$ and $p_{i} p_{j} \leq x$. Let $y=p_{i} p_{j}$. Then y determines p_{i} and p_{j} by unique factorisation and y is a natural number between 1 and x so that $y \leq\llcorner x\lrcorner \leq x$.
Thus E is at most x and so $-E=O(1)$.

