MODEL ANSWERS TO THE SECOND HOMEWORK

6.1.10. If x € S then let x,: S — C be the function

Xa(y) = {1 =

0 otherwise.

Note that
F=> f@)xa
zeX
Indeed both sides are functions S — C and it is easy to see they have
the same effect on every element of S.
Thus we are reduced to the case f = x,. In this case, the fact that
both sides are equal is shown in the proof of inclusion-exclusion.
Now suppose that S consists of N real numbers. Note that if i < j
then
Si N Sj = Sz so that ﬂle Sij = Sm,

where m is the smallest index. Note also that

> Fs)=> fla)

SES; =

= f(w1) + f(@2) + -+ f(2)

:331+(l’2—$1)+"'+(3§’i—l’i,1)

= Ty,
the largest element of S;.
The union of the sets S; is the whole of S, so the LHS is zero. The first
sum on the RHS is Xy. If one brings this over to the LHS then this
gives a proof of the formula (2.4.4.a).

6.2.3. We check that both sides of this equation are additive. If z and
y are any positive reals then

log xy = log x + log v,

so that the LHS is certainly additive. For the RHS, note that the only
non-zero terms of the sum

2_A@)

dn

are when d is a power of a prime. If m and n are coprime and d divides

mn then we can write d = dydy where d; divides m and dy divides n.
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If d is a pure power of a prime then one of d; and dy is one and the
other is equal to d. It follows that the RHS is additive as well. Thus
we may assume that n = p° is a power of a prime p. In this case

> Ad) =) AR
din V=

By Mobius inversion, we have

Zu )log(n/d)

din

= u(d)(logn — log d)

din

=logn Y pu(d) =) pu(d)logd
dln dn
= lognM (n Z w(d)logd
dln

== p(d)logd

dln

Thus

> p(d)logd = —A(n).

d/n

6.2.4. Note that p(n) is multiplicative and the product of multiplicative
functions is multiplicative, so that the LHS is multiplicative.

On the other hand, if m and n are coprime then the prime factors of
mn are simply the prime factors of m and n. It is easy to see that the

RHS is also multiplicative.
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Thus we are reduced to the case when n = p° is the power of a prime
p. In this case

DA f(d) =3 ) f ()

dn

6.2.7. We have
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where we used the fact that both

— 1 — (n)
— d
—~and ) =5

n=1 n=1

are absolutely convergent, so that we can rearrange the terms of the
sums.

6.2.8. (a) Let I be the set of natural numbers from one to n and let
I* be the Cartesian product of I with itself k times, so that I* has
cardinality n*. Let

Ca={(a1,as,...,a;) € I* | the greatest common divisor of a1, as,...,a; and n is d }.

Note that C, is a partition of I* indexed by the divisors of n. If
(ay,as,...,a;) € Cy then a; is divisible by d so that a; = b;d. In this
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case (by, by, ..., b;) € Jr(n/d), so that
|Cryal = Ji(d)-
Thus

nk: |Ik|

= Z |Cn/d|
din

=> " Jk(d).
dln

(b) As F(n) = nF is multiplicative, it follows that Ji(n) is multiplica-
tive.

(c) We already showed that the LHS is multiplicative in (b). The RHS
is the product of n*, which is multiplicative and the other term is also
multiplicative. Thus we are reduced to the case when n = p° is a power
of a prime.

In this case the condition that the greatest common divisor is coprime
to n is the same as the condition that the greatest common divisor is
not divisible by p. The number of k-tuples whose greatest common
divisor is divisible by p is

(n/p)*.

Thus the number of k-tuples whose greatest common divisor is not
divisible by p is

Jr(p%) = n* — (n/p)*

1
()
p

:nkg<l—%).
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6.2.9. We have
Y wld)p(e)F(da,es) = Y pldoplen) Y flde)

d1d2=m,61€2:n d1d2=m,6162=n d|d2,6|62

= Y pld)pler)f(de)

did|lm,eieln

= > flde) > p(di)pler)

dlm.e|n dilm/d,e1|n/e

= fde) Y wld) S e
dlm,eln dilm/d ei|n/e

= Y fld.e)M(m/d)M(n]e)
dlm,eln

= f(m,n).

6.3.2. Note that

L2201 — 2L
is either 0 or 1. On the other hand,
e+ rys+ 1=z +rys+ 14
> LT+ ya.

Suppose that
L2200 — 20 = 1.

We have
L220+ L2y0 > 2L+ 2Lya+ 1
=wro+wys+ers+rys+1
ZLXa+ Lys+ox + ya.
By symmetry we are also done if
L2y — 2Lys = 1.
Thus we may assume that
L2210 — 2Lea =0 and L2y — 2Ly = 0.
Note that if we multiply
r=rza+{z}

by 2 we get
2 =2x.+2{z}
so that
L2z =2cxa+ 1 2{x },
and so 2{x } < 1, that is, {z } < 1/2.
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In this case, since
r+y=rea+rys+{z}+{y}
and {z} +{y} <1, we see that
LT + Yo = LT+ LY.
Thus

L2200+ L2y0 = 2Lx 0+ 2Lya
=L+ Lys+Lra+Lyy
=LTa+ LYa+Lx + ya.

6.3.4. (a) One direction is clear. If

then x is rational, since the rationals are closed under addition.
Now suppose that z is rational. Then we may write

_ b
r = -

q
where p and ¢ > 0 are coprime integers. We would like to write down
an invariant that goes down at each step.
It is tempting to try to use the denominator. If we start with x = 2/3
then a; = 1/2 and x5 = 1/6 and in this case the denominator increases.
It is tempting to believe that perhaps the denominator always divides
q!. But if x = 3/7 then we get

3 1 1 1

7737 1 o
and 231 does not divide 7!. There does not seem to be a simple invariant
only depending on the denominator that goes down.
In fact it is easy to see that the numerator always goes down. In fact
if we write ¢ = cp+d, where 0 < d <p—1then ¢ > 1as z <1 implies
q > p. We claim that a; = ¢+ 1. Indeed

1 p 1
rT——==—-
c q c
_pe—gq
qc
_—d
=
<0,



so that a; > ¢+ 1. But

c+1 q_c+1
_ple+1)—g¢
 qe+1)
_ p—d
~gle+1)
> 0.

Thus a; =c+ 1 and

p—4q

= — " .
P gle+1)

It follows that the numerator of z; is at most p — ¢ < p.

Thus the algorithm terminates in at most p steps if  has numerator
p.

(b) Note that the sum of the reciprocals of by, bs,... converges by
assumption. Let

=1

We show by induction that if we choose the natural numbers aq, ao, . ..
as in part (a) then in fact a, = b, for all n. Suppose that we have
proved this result up to n. Clearly




so that a,+1 < b,y1. On the other hand,

k<n k<n
B 1
k>n bk
1 1
D41 k>ntl P
< 1 1 1
bn—H bn—H -1 bn+1
B 1
bn+1 - 1

Thus a1 > byyq. It follows that a,,1 = b,,1 and this completes the
induction.

As ayi,a9,... = by, by, ... is an infinite sequence, it follows that the
algorithm never terminates and so z is irrational.

Let b, = 23" + 1. We have

1 1
;E:;Z’m+1
1
<D o

n>k
1 1

S 2
n>0

1
93k

1
S 23(1971)

1
be1— 1

> "+

=2

Thus

is irrational.
6.3.6. (a) We prove that
(ab)!
al(bl)e
is a natural number, for all natural numbers a and b. We proceed by
induction on a.
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If a =1 then
(ab)! 0!
al(bhe — 1(b)!
= 1.

Now suppose the result holds for a.

((a+1)b)!  (ab)! (a+1)b((a+1)b—1)!
(a+D)!(BhHatt — al(b!)e (ab)!(a + 1)b!
(ab)! ((a+1)b—1)!
al(bhe (ab)!(b— 1)!
~(ab)! (((a+1)b—1)!
B a!(b!)a< (b—1)! >

The first term is an integer by induction and the second term is an
integer, since it is a binomial.
(b) Pick a prime p. The exponent of the largest power of p dividing
(2a)! is

2a 2a

|_—_|—|—|_—2_|+....
p p

Thus the exponent of the largest power of p dividing (2a)!(2b)! is
2a 2b 2a 2b

|_—_|—|—|_—_|—|—|_—2_|+|_—2_|—|—....
p p p

On the other hand the exponent of the largest power of p dividing
albl(a + b)! is
a b a+b a b a+b
L—a+L—0+1L dtLgatLsatL—s
p p p p p p
The difference of the exponent of the numerator and the denominator
is then a sum of terms of the form
2a 2b a b a+b

L—J4+L—u0—L—a0—L—1—L
k k k k k
p p p

a4+ ...

.

By (6.3.2) applied to a = a/p* and 3 = b/p* this is non-negative. But
then
(2a)!(2b)!
albl(a + b)!

is a natural number, for all natural numbers a and b (since it’s denom-

inator is not divisible by any prime).
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6.4.2. Note that

o0

i i
E [ 1= E L _l

i,j=1:p;<p; PiP; Pip; <x,p;i<pj PiP;

S Z - _Eu

PiP; <x,p; <pj PiP;

ESZL

PiPj <x,p; <pj
The term on the RHS is the number of ways to pick two primes p;, p;
such that p; < p; and p;p; < x. Let y = p;p;. Then y determines p;
and p; by unique factorisation and y is a natural number between 1
and z so that y < Lzl < x.
Thus E' is at most x and so —E = O(1).

where
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