
MODEL ANSWERS TO THE SECOND HOMEWORK

6.1.10. If x ∈ S then let χx : S −→ C be the function

χx(y) =

{
1 if y = x

0 otherwise.

Note that

f =
∑
x∈X

f(x)χx.

Indeed both sides are functions S −→ C and it is easy to see they have
the same effect on every element of S.
Thus we are reduced to the case f = χx. In this case, the fact that
both sides are equal is shown in the proof of inclusion-exclusion.
Now suppose that S consists of N real numbers. Note that if i < j
then

Si ∩ Sj = Si so that ∩kj=1 Sij = Sm,

where m is the smallest index. Note also that∑
s∈Si

f(s) =
i∑

l=1

f(xl)

= f(x1) + f(x2) + · · ·+ f(xi)

= x1 + (x2 − x1) + · · ·+ (xi − xi−1)
= xi,

the largest element of Si.
The union of the sets Si is the whole of S, so the LHS is zero. The first
sum on the RHS is XN . If one brings this over to the LHS then this
gives a proof of the formula (2.4.4.a).
6.2.3. We check that both sides of this equation are additive. If x and
y are any positive reals then

log xy = log x+ log y,

so that the LHS is certainly additive. For the RHS, note that the only
non-zero terms of the sum ∑

d|n

Λ(d)

are when d is a power of a prime. If m and n are coprime and d divides
mn then we can write d = d1d2 where d1 divides m and d2 divides n.
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If d is a pure power of a prime then one of d1 and d2 is one and the
other is equal to d. It follows that the RHS is additive as well. Thus
we may assume that n = pe is a power of a prime p. In this case

∑
d|n

Λ(d) =
e∑

i=0

Λ(pi)

=
e∑

i=1

log p

= e log p

= log pe

= log n.

By Möbius inversion, we have

Λ(n) =
∑
d|n

µ(d) log(n/d)

=
∑
d|n

µ(d)(log n− log d)

= log n
∑
d|n

µ(d)−
∑
d|n

µ(d) log d

= log nM(n)−
∑
d|n

µ(d) log d

= −
∑
d|n

µ(d) log d

Thus ∑
d/n

µ(d) log d = −Λ(n).

6.2.4. Note that µ(n) is multiplicative and the product of multiplicative
functions is multiplicative, so that the LHS is multiplicative.
On the other hand, if m and n are coprime then the prime factors of
mn are simply the prime factors of m and n. It is easy to see that the
RHS is also multiplicative.
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Thus we are reduced to the case when n = pe is the power of a prime
p. In this case∑

d|n

µ(d)f(d) =
e∑

i=0

µ(pi)f(pi)

= µ(1)f(1) + µ(p)f(p) + 0 + · · ·+ 0

= 1− f(p).

6.2.7. We have
∞∑
n=1

1

ns
·
∞∑
n=1

µ(n)

ns
=

∞∑
m=1

1

ms
·
∞∑
n=1

µ(n)

ns

=
∞∑

m=1

∞∑
n=1

1

ms

µ(n)

ns

=
∞∑

m=1

∞∑
d=1

µ(d)

(md)s

=
∞∑
n=1

∑
d|n

µ(d)

ns

=
∞∑
n=1

1

ns

∑
d|n

µ(d)

=
∞∑
n=1

1

ns
M(n)

= 1,

where we used the fact that both
∞∑
n=1

1

ns
and

∞∑
n=1

µ(n)

ns

are absolutely convergent, so that we can rearrange the terms of the
sums.
6.2.8. (a) Let I be the set of natural numbers from one to n and let
Ik be the Cartesian product of I with itself k times, so that Ik has
cardinality nk. Let

Cd = { (a1, a2, . . . , ak) ∈ Ik | the greatest common divisor of a1, a2, . . . , ak and n is d }.

Note that Cd is a partition of Ik indexed by the divisors of n. If
(a1, a2, . . . , ak) ∈ Cd then ai is divisible by d so that ai = bid. In this
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case (b1, b2, . . . , bk) ∈ Jk(n/d), so that

|Cn/d| = Jk(d).

Thus

nk = |Ik|

=
∑
d|n

|Cn/d|

=
∑
d|n

Jk(d).

(b) As F (n) = nk is multiplicative, it follows that Jk(n) is multiplica-
tive.
(c) We already showed that the LHS is multiplicative in (b). The RHS
is the product of nk, which is multiplicative and the other term is also
multiplicative. Thus we are reduced to the case when n = pe is a power
of a prime.
In this case the condition that the greatest common divisor is coprime
to n is the same as the condition that the greatest common divisor is
not divisible by p. The number of k-tuples whose greatest common
divisor is divisible by p is

(n/p)k.

Thus the number of k-tuples whose greatest common divisor is not
divisible by p is

Jk(pe) = nk − (n/p)k

= nk

(
1− 1

pk

)
= nk

∏
p|n

(
1− 1

pk

)
.
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6.2.9. We have∑
d1d2=m,e1e2=n

µ(d1)µ(e1)F (d2, e2) =
∑

d1d2=m,e1e2=n

µ(d1)µ(e1)
∑

d|d2,e|e2

f(d, e)

=
∑

d1d|m,e1e|n

µ(d1)µ(e1)f(d, e)

=
∑

d|m,e|n

f(d, e)
∑

d1|m/d,e1|n/e

µ(d1)µ(e1)

=
∑

d|m,e|n

f(d, e)
∑

d1|m/d

µ(d1)
∑
e1|n/e

µ(e1)

=
∑

d|m,e|n

f(d, e)M(m/d)M(n/e)

= f(m,n).

6.3.2. Note that
x2xy− 2xxy

is either 0 or 1. On the other hand,

xxy + xyy + 1 = xx+ xyy + 1y

≥ xx+ yy.

Suppose that
x2xy− 2xxy = 1.

We have

x2xy + x2yy ≥ 2xxy + 2xyy + 1

= xxy + xyy + xxy + xyy + 1

≥ xxy + xyy + xx+ yy.

By symmetry we are also done if

x2yy− 2xyy = 1.

Thus we may assume that

x2xy− 2xxy = 0 and x2yy− 2xyy = 0.

Note that if we multiply

x = xxy + {x }
by 2 we get

2x = 2xxy + 2{x }
so that

x2xy = 2xxy + x2{x }y,
and so 2{x } < 1, that is, {x } < 1/2.
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In this case, since

x+ y = xxy + xyy + {x }+ { y }

and {x }+ { y } < 1, we see that

xx+ yy = xxy + xyy.

Thus

x2xy + x2yy = 2xxy + 2xyy

= xxy + xyy + xxy + xyy

= xxy + xyy + xx+ yy.

6.3.4. (a) One direction is clear. If

x =
1

a1
+

1

a2
+ · · ·+ 1

an
,

then x is rational, since the rationals are closed under addition.
Now suppose that x is rational. Then we may write

x =
p

q

where p and q > 0 are coprime integers. We would like to write down
an invariant that goes down at each step.
It is tempting to try to use the denominator. If we start with x = 2/3
then a1 = 1/2 and x2 = 1/6 and in this case the denominator increases.
It is tempting to believe that perhaps the denominator always divides
q!. But if x = 3/7 then we get

3

7
=

1

3
+

1

11
+

1

231
,

and 231 does not divide 7!. There does not seem to be a simple invariant
only depending on the denominator that goes down.
In fact it is easy to see that the numerator always goes down. In fact
if we write q = cp+ d, where 0 ≤ d ≤ p− 1 then c ≥ 1 as x ≤ 1 implies
q ≥ p. We claim that a1 = c+ 1. Indeed

x− 1

c
=
p

q
− 1

c

=
pc− q
qc

=
−d
qc

< 0,

6



so that a1 ≥ c+ 1. But

x− 1

c+ 1
=
p

q
− 1

c+ 1

=
p(c+ 1)− q
q(c+ 1)

=
p− d
q(c+ 1)

≥ 0.

Thus a1 = c+ 1 and

x1 =
p− q
q(c+ 1)

.

It follows that the numerator of x1 is at most p− q < p.
Thus the algorithm terminates in at most p steps if x has numerator
p.
(b) Note that the sum of the reciprocals of b1, b2, . . . converges by
assumption. Let

x =
∞∑
n=1

1

bn
.

We show by induction that if we choose the natural numbers a1, a2, . . .
as in part (a) then in fact an = bn for all n. Suppose that we have
proved this result up to n. Clearly

x−
∑
k≤n

1

ak
= x−

∑
k≤n

1

bk

=
∑
k>n

1

bk

>
1

bn+1

,
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so that an+1 < bn+1. On the other hand,

x−
∑
k≤n

1

ak
= x−

∑
k≤n

1

bk

=
∑
k>n

1

bk

=
1

bn+1

+
∑

k>n+1

1

bk

<
1

bn+1

+
1

bn+1 − 1
− 1

bn+1

=
1

bn+1 − 1
.

Thus an+1 ≥ bn+1. It follows that an+1 = bn+1 and this completes the
induction.
As a1, a2, . . . = b1, b2, . . . is an infinite sequence, it follows that the
algorithm never terminates and so x is irrational.
Let bk = 23k + 1. We have∑

n≥k

1

bn
=
∑
n≥k

1

23n + 1

≤
∑
n≥k

1

23n

≤ 1

23k

∑
n≥0

1

2n

= 2
1

23k

≤ 1

23(k−1)

=
1

bk−1 − 1
.

Thus ∑
(23k + 1)−1

is irrational.
6.3.6. (a) We prove that

(ab)!

a!(b!)a

is a natural number, for all natural numbers a and b. We proceed by
induction on a.
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If a = 1 then

(ab)!

a!(b!)a
=

b!

1!(b!)1

= 1.

Now suppose the result holds for a.

((a+ 1)b)!

(a+ 1)!(b!)a+1
=

(ab)!

a!(b!)a
(a+ 1)b((a+ 1)b− 1)!

(ab)!(a+ 1)b!

=
(ab)!

a!(b!)a
((a+ 1)b− 1)!

(ab)!(b− 1)!

=
(ab)!

a!(b!)a

(
((a+ 1)b− 1)!

(b− 1)!

)
.

The first term is an integer by induction and the second term is an
integer, since it is a binomial.
(b) Pick a prime p. The exponent of the largest power of p dividing
(2a)! is

x
2a

p
y + x

2a

p2
y + . . . .

Thus the exponent of the largest power of p dividing (2a)!(2b)! is

x
2a

p
y + x

2b

p
y + x

2a

p2
y + x

2b

p2
y + . . . .

On the other hand the exponent of the largest power of p dividing
a!b!(a+ b)! is

x
a

p
y + x

b

p
y + x

a+ b

p
y + x

a

p2
y + x

b

p2
y + x

a+ b

p2
y + . . . .

The difference of the exponent of the numerator and the denominator
is then a sum of terms of the form

x
2a

pk
y + x

2b

pk
y− x

a

pk
y− x

b

pk
y− x

a+ b

pk
y.

By (6.3.2) applied to α = a/pk and β = b/pk this is non-negative. But
then

(2a)!(2b)!

a!b!(a+ b)!

is a natural number, for all natural numbers a and b (since it’s denom-
inator is not divisible by any prime).
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6.4.2. Note that
∞∑

i,j=1:pi<pj

x
x

pipj
y =

∑
pipj≤x,pi<pj

x
x

pipj
y

≤
∑

pipj≤x,pi<pj

x

pipj
− E,

where
E ≤

∑
pipj≤x,pi<pj

1.

The term on the RHS is the number of ways to pick two primes pi, pj
such that pi < pj and pipj ≤ x. Let y = pipj. Then y determines pi
and pj by unique factorisation and y is a natural number between 1
and x so that y ≤ xxy ≤ x.
Thus E is at most x and so −E = O(1).
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