
MODEL ANSWERS TO THE FIRST HOMEWORK

6.1.1. We have

σk(n) =
∑
d|n

dk.

Let f : N −→ N be the function f(n) = nk. If m and n are are any two
natural numbers then

f(mn) = (mn)k

= mknk

= f(m)f(n).

In particular f is multiplicative. Therefore σk(n) is multiplicative.
Suppose that n = pe is a power of a prime. Then the divisors of n are
the powers of p up to n and so

σk(pe) =
e∑

i=0

(pi)k

=
e∑

i=0

pik

=
e∑

i=0

(pk)i

=
pk(e+1) − 1

pk − 1
.

Thus if n = pe11 p
e2
2 . . . perr is the prime factorisation then

σk(n) =
r∏

i=1

p
k(ei+1)
i − 1

pki − 1
.

6.1.2. We first show that both sides are multiplicative. As τ is a
multiplicative function it follows that τ 3 is a multiplicative function
and so the LHS is a multiplicative function.
Similarly ∑

d|n

τ(d)

is multiplicative as τ is multiplicative and so the RHS is multiplicative,
as the square of a multiplicative function is multiplicative.
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Suppose that n = pe is a power of a prime. For the LHS we have∑
d|pe

τ 3(d) =
e∑

i=0

τ 3(pi)

=
e∑

i=0

(1 + i)3

=
e+1∑
i=1

i3

=
(e+ 1)2(e+ 2)2

4
.

On the other hand, for the RHS we have∑
d|pe

τ(d)

2

=

(
e∑

i=0

τ(pi)

)2

=

(
e∑

i=0

(1 + i)

)2

=

(
e+1∑
i=1

i

)2

=

(
(e+ 1)(e+ 2)

2

)2

.

Thus we have equality when n is a power of a prime.
Suppose that pe11 p

e2
2 . . . pekk is the prime factorisation of n. Suppose the

LHS is the function l(n) and the RHS is the function r(n). We have

l(n) = l(pe11 p
e2
2 . . . pekk )

= l(pe11 )l(pe22 ) . . . l(pekk )

= r(pe11 )r(pe22 ) . . . r(pekk )

= r(pe11 p
e2
2 . . . pekk )

= r(n).

6.1.3. Suppose that n = pe is a prime power. Then

σ(n) = 1 + p+ p2 + · · ·+ pe.

Hence σ(n) is odd if and only if

p+ p2 + · · ·+ pe

is even. If p = 2 then σ(n) is always odd and p is odd then e is even.
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If n = 2e0pe11 p
e2
2 . . . perr is the prime factorisation of n then σ(peii ) is odd

by multiplicativity so that we must have ei is even for all 0 < i ≤ r. If
e0 is even it follows that n is a square and if e0 is odd then n is twice
a square.
6.1.5. If we expand the RHS we get(

∞∑
n=1

1

ns

)2

=

(
∞∑

m=1

1

ms

)(
∞∑
n=1

1

ns

)

=
∞∑

m=1

∞∑
n=1

1

ms

1

ns

=
∞∑

m=1

∞∑
d=1

1

(md)s

=
∞∑
n=1

(
∑
d|n

1

ns
)

=
∞∑
n=1

τ(n)

ns
.

Here we used the fact that since the series converges and all terms are
positive, it follows that the series converges absolutely, so that we are
free to rearrange the terms of the sum.
6.1.6. (a) Let d1 be an odd divisor of n. Suppose that n = 2em where
m is odd. We have

e∑
i=0

(−1)n/2
id12id1 = (−1)n/d1d1(1 + 2 + 22 + · · ·+ 2e−1 − 2e)

= (−1)n/d1d1

(
2e − 1

2− 1
− 2e

)
= −(−1)n/d1d1.

Thus

−
∑
d|n

(−1)n/dd =
∑
d1|m

−
e∑

i=0

(−1)n/2
id12id1

=
∑
d1|m

d1.
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(b) Suppose that n is even, so that n = 2l for some natural number l
and e > 0.

2σ(l)− σ(n) =
∑
d|l

2d−
∑
d|n

d

=
∑
2d|l

d−
∑
d|n

d

=
∑
d1|m

d1

=
∑
d|n

(−1)n/dd.

6.1.8. Suppose that m and n are coprime. If m is divisible by µ distinct
primes and n is divisible by ν distinct primes then mn is divisible by
µ+ ν distinct primes, so that

ω(mn) = ω(m) + ω(n)

and so ω is additive.
6.1.9. If n = pe11 p

e2
2 . . . perr is the prime factorisation of n and p1 ≤ p2 ≤

p3 ≤ · · · ≤ pr then clearly

pk ≥ k + 1.

Note also that r = ω(n). If n = pe is a power of a prime and p ≥ k
then

ϕ(n) = pe − pe−1

= n− n

p

= n(1− 1

p
)

≥ n(1− 1

k
).
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Thus

ϕ(n) = ϕ(pe11 p
e2
2 . . . perr )

= ϕ(pe11 )ϕ(pe22 ) . . . ϕ(perr )

≥
ω(n)∏
k=1

pei(1− 1

k + 1
)

= n

ω(n)+1∏
k=2

(1− 1

k
)

= n

ω(n)+1∏
k=2

k − 1

k

=
n

ω(n) + 1
.

To establish the inequalities

2ω(n) ≤ τ(n) ≤ n,

note that all three terms are positive and multiplicative. So we may
assume that n = pe is a power of a prime. In this case ω(n) = 1, unless
e = 0 so that n = 1 and τ(n) = 1 + e and the inequalities are clear.
Taking logs we see that

2ω(n) ≤ n implies that ω(n) ≤ log n

log 2
.

Note that ω(n) + 1 ≤ 2ω(n) and so

ϕ(n) ≥ log 2

2 log n
n.

6.2.1. We have that

σ(n) =
∑
d|n

d

so that this result follows by Möbius inversion.
6.2.2. We may write n in the form n = n2

1n2 where n2 is square-free.
Suppose that d2|n. Suppose that p is a prime and pe divides d. Then
p2e divides n and so p2e−1 divides n2

1, since p2 does not divide n2. But
then pe divides n1. Thus d divides n1.
In this case d2|n if and only if d|n1. It follows that∑

d2|n

µ(d) =
∑
d|n1

µ(d).
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But ∑
d|n1

µ(d) =

{
1 if n1 = 1

0 otherwise.

But µ(n) is zero if and only if n is square-free. Thus

|µ(n)| =

{
1 if n1 = 1

0 otherwise.

6


