
SECOND MIDTERM

MATH 104B, UCSD, WINTER 18

You have 80 minutes.

There are 5 problems, and the total number of

points is 70. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Student ID #:

Problem Points Score

1 15

2 10

3 15

4 20

5 10

6 10

7 10

Total 70
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1. (15pts) (i) Give the definition of li(x).

li(x) =

∫ x

2

1

log t
dt.

(ii) Give the definition of ϑ(x).

ϑ(x) =
∑

p≤x

log p.

(iii) Give the definition of the Riemann zeta-function ζ(s).

ζ(s) =
∑

k

1

ks
.
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2. (10pts) Show that

li(x) =
x

log x
+

1!x

log2 x
+

2!x

log3 x
+ · · ·+ (n− 1)!x

logn x
+O

(

x

logn+1 x

)

.

Note that if we integrate by parts then we get
∫ x

0

dt

logn t
=

∫ x

0

1 · dt

logn t

=

[

t

logn t

]x

0

+n

∫ x

0

t dt

t logn+1 t

=
x

logn x
+ n

∫ x

0

dt

logn+1 t
.

It follows by induction that

li(x) =
x

log x
+

1!x

log2 x
+

2!x

log3 x
+ · · ·+ (n− 1)!x

logn x
+ n!

∫ x

0

dt

logn+1 t
.

Now to estimate the last integral, we break it into three parts.
∫ x

0

dt

logn+1 t
=

∫ 2

0

dt

logn+1 t
+

∫

√
x

2

dt

logn+1 t
+

∫ x

√
x

dt

logn+1 t
.

The first integral is constant. The second is over an interval of length
bounded by

√
x of a function bounded by a constant ( 1

logn+1 2
) and so

the second integral is O(
√
x). The third integral is over an interval of

length bounded by x of a function which is bounded by

1

logn+1 √x
= O

(

1

logn+1 x

)

.

Thus the last integral is

O

(

x

logn+1 x

)

.

Therefore
∣

∣

∣

∣

n!

∫ x

0

dt

logn+1 t

∣

∣

∣

∣

= O

(

x

logn+1 x

)

.

and so the result follows.
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3. (15pts) Show that
(i)

π(x) ≤ r + x

r
∏

i=1

(

1− 1

pi

)

+ 2r,

where p1, p2, . . . , pr are the first r primes.

Let

P = {n ∈ N | 1 < n ≤ x and n is a not a multiple of p1, p2, . . . , pr },
so that P is the set of integers from 2 to x which are not multiples of
p1, p2, . . . , pr. Let A(x, r) be the cardinality of P .
If p is a prime from 1 to n then either p is one of p1, p2, . . . , pr or p
belongs to P . It follows that

π(x) ≤ r + A(x, r).

We want to estimate A(x, r). Let Mi be the set of integers from 1 to
n which are multiples of pi. Let Mij be the set of integers from 1 to n
which are multiples of both pi and pj. As pi and pj are coprime,

Mij = Mi ∩Mj.

Note that
|Mi| = x

x

pi
y and |Mij| = x

x

pipj
y,

and so on. It follows by inclusion-exclusion that

A(x, r) = xxy−
r

∑

i=1

x
x

pi
y+

∑

i 6=j≤r

x
x

pipj
y+ · · ·+ (−1)rx

x

p1p2 . . . pr
y.

Suppose that we approximate the RHS by simply ignoring all of the
round downs,

x−
r

∑

i=1

x

pi
+

∑

i 6=j≤r

x

pipj
+ · · ·+ (−1)r

x

p1p2 . . . pr
.

The worse case scenario for the error is

1 +

(

r

1

)

+

(

r

2

)

+ · · ·+
(

r

r

)

= 2r.

It follows that

π(x) ≤ r + x

r
∏

i=1

(

1− 1

pi

)

+ 2r.
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(b) If x ≥ 2 then
∏

p≤x

(

1− 1

p

)

<
1

log x
.

We compute the product of the reciprocals,
∏

p≤x

1

1− 1
p

=
∏

p≤x

(

1 +
1

p
+

1

p2
+ . . .

)

.

Consider what happens if we expand the RHS. If m is an integer which
is a product of primes less than x then the term 1

m
appears somewhere

in the expansion of this product.
Now any integer m ≤ x is a product of primes less than x and so

∏

p≤x

1

1− 1
p

>

n
∑

k=1

1

k

>

∫

pxq

1

du

u

> log x.
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(c)

π(x) ≪ x

log log x
.

π(x) ≤ r + x
r
∏

i=1

(

1− 1

pi

)

+ 2r as proved above

≤ 2r+1 + x

r
∏

i=1

(

1− 1

pi

)

as r ≤ 2r

≤ 2r+1 +
x

log pr
using (b)

≤ 2r+1 +
x

log r
as pr ≥ r

≤ 2log x+2 +
x

log log x
take r = plog xq

≤ 4 · 2log x + x

log log x

= O
(

2log x
)

+
x

log log x

≤ o

(

x

log log x

)

+
x

log log x
as log 2 < 1

= O

(

x

log log x

)

.
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4. (20pts) Let 〈x〉 = xx+ 1/2y denote the nearest integer to x.
(i) if x is a real number then show that

xxy = 〈x/2〉+ xx/2y.

Suppose that {x/2 } < 1/2. Then

〈x/2〉 = xx/2y and xxy = 2xx/2y

and so

xxy = 2xx/2y

= xx/2y+ 〈x/2〉.
Now supppose that {x/2 } ≥ 1/2. Then

〈x/2〉 = xx/2y+ 1 and xxy = 2xx/2y+ 1

and so

xxy = 2xx/2y+ 1

= xx/2y+ 〈x/2〉.

(ii) Let p1, p2, . . . , pm be the first m odd primes and let P (x,m) be the

number of odd integers at most x and not divisible by any of these
primes.
Show that

P (x,m) =
∑

a

〈x/2a〉 −
∑

b

〈x/2b〉

where a and b run over all products of an even and an odd number of
primes among p1, p2, . . . , pm respectively.

P (x,m) = A(x,m+ 1) + 1

= xxy− xx/2y− (
∑

xx/piy−
∑

xx/2piy) + (
∑

xx/pipjy−
∑

xx/2pipjy) + . . .

= 〈x/2〉 −
∑

〈x/pi〉+
∑

〈x/pipj〉+ . . .

=
∑

a

〈x/2a〉 −
∑

b

〈x/2b〉.
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(iii) Show that

π(x) = π(
√
x) + P (x, π(

√
x)− 1)− 1.

Let r = π(
√
x). Then

π(x) = r + A(x, r)

= π(
√
x) + P (x, π(

√
x)− 1.

(iv) Use (iii) to calculate π(200).

Now the odd primes up to 14 are 3, 5, 7, 11 and 13. Thus

π(
√
200) = 6.

On the other hand, one can compute

P (200, 5) = 100− (33 + 20 + 14 + 9 + 8) + (7 + 5 + 3 + 3 + 3 + 2 + 2 + 1 + 1 + 1)− (1 + 1 + 1)

= 41.

Thus

π(200) = π(14) + P (200, 5)− 1

= 6 + 41− 1

= 46.
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5. (10pts) Derive the prime number theorem from the relation

ϑ(x) ∼ x.

We have

x ∼
∑

p≤x

log p

≤
∑

p≤x

log x

= log x
∑

p≤x

1

= π(x) log x.

On the other hand

x ∼
∑

x1−ǫ≤p≤x

log p

≥
∑

x1−ǫ≤p≤x

log x1−ǫ

= (1− ǫ) log x
∑

x1−ǫ≤p≤x

1

= (1− ǫ)(π(x)− π(x1−ǫ)) log x

= (1− ǫ)(π(x) +O(x1−ǫ)) log x.

Putting these together, we see that

π(x) ∼ x

log x
.
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Bonus Challenge Problems

6. (10pts) Show that
∫ x

2

π(t)

t2
dt =

∑

p≤x

1

p
+ o(1).

We apply partial summation to

λn = pn cn = 1 and f(x) =
1

x
.

We get
∑

p≤x

1

p
=

π(x)

x
−
∫ x

2

−π(t)

t2
dt.

As

π(x) = O

(

x

log log x

)

the first expression on the RHS is certainly o(1). Rearranging we get
∫ x

2

π(t)

t2
dt =

∑

p≤x

1

p
+ o(1).
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7. (10pts) Show that there are constants c1 and c2 such that

c1
x

log x
< π(x) < c2

x

log x
.

See lecture 7.
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