## $\begin{array}{c} {\rm SECOND~MIDTERM} \\ {\rm MATH~104B,~UCSD,~WINTER~18} \end{array}$

## You have 80 minutes.

| There are 5 problems,  | and the total number of     |
|------------------------|-----------------------------|
| points is 70. Show all | your work. Please make      |
| your work as clear and | easy to follow as possible. |

| Name:         |
|---------------|
| Signature:    |
| Student ID #: |

| Problem | Points | Score |
|---------|--------|-------|
| 1       | 15     |       |
| 2       | 10     |       |
| 3       | 15     |       |
| 4       | 20     |       |
| 5       | 10     |       |
| 6       | 10     |       |
| 7       | 10     |       |
| Total   | 70     |       |

1. (15pts) (i) Give the definition of li(x).

$$\operatorname{li}(x) = \int_2^x \frac{1}{\log t} \, \mathrm{d}t.$$

(ii) Give the definition of  $\vartheta(x)$ .

$$\vartheta(x) = \sum_{p \le x} \log p.$$

(iii) Give the definition of the Riemann zeta-function  $\zeta(s)$ .

$$\zeta(s) = \sum_{k} \frac{1}{k^s}.$$

2. (10pts) Show that

$$li(x) = \frac{x}{\log x} + \frac{1!x}{\log^2 x} + \frac{2!x}{\log^3 x} + \dots + \frac{(n-1)!x}{\log^n x} + O\left(\frac{x}{\log^{n+1} x}\right).$$

Note that if we integrate by parts then we get

$$\int_0^x \frac{\mathrm{d}t}{\log^n t} = \int_0^x 1 \cdot \frac{\mathrm{d}t}{\log^n t}$$

$$= \left[\frac{t}{\log^n t}\right]_0^x + n \int_0^x \frac{t \, \mathrm{d}t}{t \log^{n+1} t}$$

$$= \frac{x}{\log^n x} + n \int_0^x \frac{\mathrm{d}t}{\log^{n+1} t}.$$

It follows by induction that

$$\operatorname{li}(x) = \frac{x}{\log x} + \frac{1!x}{\log^2 x} + \frac{2!x}{\log^3 x} + \dots + \frac{(n-1)!x}{\log^n x} + n! \int_0^x \frac{\mathrm{d}t}{\log^{n+1} t}.$$

Now to estimate the last integral, we break it into three parts.

$$\int_0^x \frac{\mathrm{d}t}{\log^{n+1}t} = \int_0^2 \frac{\mathrm{d}t}{\log^{n+1}t} + \int_2^{\sqrt{x}} \frac{\mathrm{d}t}{\log^{n+1}t} + \int_{\sqrt{x}}^x \frac{\mathrm{d}t}{\log^{n+1}t}.$$

The first integral is constant. The second is over an interval of length bounded by  $\sqrt{x}$  of a function bounded by a constant  $(\frac{1}{\log^{n+1} 2})$  and so the second integral is  $O(\sqrt{x})$ . The third integral is over an interval of length bounded by x of a function which is bounded by

$$\frac{1}{\log^{n+1} \sqrt{x}} = O\left(\frac{1}{\log^{n+1} x}\right).$$

Thus the last integral is

$$O\left(\frac{x}{\log^{n+1} x}\right)$$
.

Therefore

$$\left| n! \int_0^x \frac{\mathrm{d}t}{\log^{n+1} t} \right| = O\left(\frac{x}{\log^{n+1} x}\right).$$

and so the result follows.

3. (15pts) Show that

(i)

$$\pi(x) \le r + x \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) + 2^r,$$

where  $p_1, p_2, \ldots, p_r$  are the first r primes.

Let

 $P = \{ n \in \mathbb{N} \mid 1 < n \leq x \text{ and } n \text{ is a not a multiple of } p_1, p_2, \dots, p_r \},$ 

so that P is the set of integers from 2 to x which are not multiples of  $p_1, p_2, \ldots, p_r$ . Let A(x, r) be the cardinality of P.

If p is a prime from 1 to n then either p is one of  $p_1, p_2, \ldots, p_r$  or p belongs to P. It follows that

$$\pi(x) \le r + A(x, r).$$

We want to estimate A(x,r). Let  $M_i$  be the set of integers from 1 to n which are multiples of  $p_i$ . Let  $M_{ij}$  be the set of integers from 1 to n which are multiples of both  $p_i$  and  $p_j$ . As  $p_i$  and  $p_j$  are coprime,

$$M_{ij} = M_i \cap M_j$$
.

Note that

$$|M_i| = \lfloor \frac{x}{p_i} \rfloor$$
 and  $|M_{ij}| = \lfloor \frac{x}{p_i p_j} \rfloor$ ,

and so on. It follows by inclusion-exclusion that

$$A(x,r) = \lfloor x \rfloor - \sum_{i=1}^r \lfloor \frac{x}{p_i} \rfloor + \sum_{i \neq j \leq r} \lfloor \frac{x}{p_i p_j} \rfloor + \dots + (-1)^r \lfloor \frac{x}{p_1 p_2 \dots p_r} \rfloor.$$

Suppose that we approximate the RHS by simply ignoring all of the round downs,

$$x - \sum_{i=1}^{r} \frac{x}{p_i} + \sum_{i \neq j < r} \frac{x}{p_i p_j} + \dots + (-1)^r \frac{x}{p_1 p_2 \dots p_r}.$$

The worse case scenario for the error is

$$1 + \binom{r}{1} + \binom{r}{2} + \dots + \binom{r}{r} = 2^r.$$

It follows that

$$\pi(x) \le r + x \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) + 2^r.$$

(b) If 
$$x \ge 2$$
 then

$$\prod_{p \le x} \left( 1 - \frac{1}{p} \right) < \frac{1}{\log x}.$$

We compute the product of the reciprocals,

$$\prod_{p \le x} \frac{1}{1 - \frac{1}{p}} = \prod_{p \le x} \left( 1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right).$$

Consider what happens if we expand the RHS. If m is an integer which is a product of primes less than x then the term  $\frac{1}{m}$  appears somewhere in the expansion of this product.

Now any integer  $m \leq x$  is a product of primes less than x and so

$$\prod_{p \le x} \frac{1}{1 - \frac{1}{p}} > \sum_{k=1}^{n} \frac{1}{k}$$

$$> \int_{1}^{\lceil x \rceil} \frac{\mathrm{d}u}{u}$$

$$> \log x.$$

(c) 
$$\pi(x) \ll \frac{x}{\log \log x}.$$

$$\pi(x) \leq r + x \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right) + 2^r \quad \text{as proved above}$$

$$\leq 2^{r+1} + x \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right) \quad \text{as } r \leq 2^r$$

$$\leq 2^{r+1} + \frac{x}{\log p_r} \quad \text{using (b)}$$

$$\leq 2^{r+1} + \frac{x}{\log r} \quad \text{as } p_r \geq r$$

$$\leq 2^{\log x + 2} + \frac{x}{\log \log x} \quad \text{take } r = \lceil \log x \rceil$$

$$\leq 4 \cdot 2^{\log x} + \frac{x}{\log \log x}$$

$$\leq 4 \cdot 2^{\log x} + \frac{x}{\log \log x}$$

$$= O\left(2^{\log x}\right) + \frac{x}{\log \log x}$$

$$\leq o\left(\frac{x}{\log \log x}\right) + \frac{x}{\log \log x} \quad \text{as } \log 2 < 1$$

$$= O\left(\frac{x}{\log \log x}\right).$$

- 4. (20pts) Let  $\langle x \rangle = \bot x + 1/2 \bot$  denote the nearest integer to x.
- (i) if x is a real number then show that

$$\lfloor x \rfloor = \langle x/2 \rangle + \lfloor x/2 \rfloor.$$

Suppose that  $\{x/2\} < 1/2$ . Then

$$\langle x/2 \rangle = \lfloor x/2 \rfloor$$
 and  $\lfloor x \rfloor = 2 \lfloor x/2 \rfloor$ 

and so

Now suppose that  $\{x/2\} \ge 1/2$ . Then

$$\langle x/2 \rangle = \lfloor x/2 \rfloor + 1$$
 and  $\lfloor x \rfloor = 2 \lfloor x/2 \rfloor + 1$ 

and so

(ii) Let  $p_1, p_2, \ldots, p_m$  be the first m odd primes and let P(x, m) be the number of odd integers at most x and not divisible by any of these primes.

Show that

$$P(x,m) = \sum_{a} \langle x/2a \rangle - \sum_{b} \langle x/2b \rangle$$

where a and b run over all products of an even and an odd number of primes among  $p_1, p_2, \ldots, p_m$  respectively.

$$\begin{split} P(x,m) &= A(x,m+1) + 1 \\ &= \lfloor x \rfloor - \lfloor x/2 \rfloor - \left( \sum \lfloor x/p_i \rfloor - \sum \lfloor x/2p_i \rfloor \right) + \left( \sum \lfloor x/p_i p_j \rfloor - \sum \lfloor x/2p_i p_j \rfloor \right) + \dots \\ &= \left\langle x/2 \right\rangle - \sum \left\langle x/p_i \right\rangle + \sum \left\langle x/p_i p_j \right\rangle + \dots \\ &= \sum_a \langle x/2a \rangle - \sum_b \langle x/2b \rangle. \end{split}$$

(iii) Show that

$$\pi(x) = \pi(\sqrt{x}) + P(x, \pi(\sqrt{x}) - 1) - 1.$$

Let  $r = \pi(\sqrt{x})$ . Then

$$\pi(x) = r + A(x, r)$$
$$= \pi(\sqrt{x}) + P(x, \pi(\sqrt{x}) - 1.$$

(iv) Use (iii) to calculate  $\pi(200)$ .

Now the odd primes up to 14 are 3, 5, 7, 11 and 13. Thus

$$\pi(\sqrt{200}) = 6.$$

On the other hand, one can compute

$$P(200,5) = 100 - (33 + 20 + 14 + 9 + 8) + (7 + 5 + 3 + 3 + 3 + 2 + 2 + 1 + 1 + 1) - (1 + 1 + 1)$$

$$= 41$$

Thus

$$\pi(200) = \pi(14) + P(200, 5) - 1$$
$$= 6 + 41 - 1$$
$$= 46.$$

5. (10pts) Derive the prime number theorem from the relation  $\vartheta(x) \sim x$ .

We have

$$x \sim \sum_{p \le x} \log p$$

$$\le \sum_{p \le x} \log x$$

$$= \log x \sum_{p \le x} 1$$

$$= \pi(x) \log x.$$

On the other hand

$$x \sim \sum_{x^{1-\epsilon} \le p \le x} \log p$$

$$\geq \sum_{x^{1-\epsilon} \le p \le x} \log x^{1-\epsilon}$$

$$= (1-\epsilon) \log x \sum_{x^{1-\epsilon} \le p \le x} 1$$

$$= (1-\epsilon)(\pi(x) - \pi(x^{1-\epsilon})) \log x$$

$$= (1-\epsilon)(\pi(x) + O(x^{1-\epsilon})) \log x.$$

Putting these together, we see that

$$\pi(x) \sim \frac{x}{\log x}.$$

## **Bonus Challenge Problems**

6. (10pts) Show that

$$\int_{2}^{x} \frac{\pi(t)}{t^{2}} dt = \sum_{p \le x} \frac{1}{p} + o(1).$$

We apply partial summation to

$$\lambda_n = p_n$$
  $c_n = 1$  and  $f(x) = \frac{1}{x}$ .

We get

$$\sum_{p \le x} \frac{1}{p} = \frac{\pi(x)}{x} - \int_{2}^{x} -\frac{\pi(t)}{t^{2}} dt.$$

As

$$\pi(x) = O\left(\frac{x}{\log\log x}\right)$$

the first expression on the RHS is certainly o(1). Rearranging we get

$$\int_{2}^{x} \frac{\pi(t)}{t^{2}} dt = \sum_{p \le x} \frac{1}{p} + o(1).$$

7. (10pts) Show that there are constants  $c_1$  and  $c_2$  such that  $c_1 \frac{x}{\log x} < \pi(x) < c_2 \frac{x}{\log x}.$ 

$$c_1 \frac{x}{\log x} < \pi(x) < c_2 \frac{x}{\log x}$$

See lecture 7.