
9. Primes in arithmetic progression

Definition 9.1. The Riemann zeta-function ζ(s) is the function
which assigns to a real number s > 1 the convergent series

∞∑
k=1

1

ks
.

Part of the significance of the Riemann zeta-function stems from

Theorem 9.2. If s > 1 then

ζ(s) =
∏
p

(
1

1− p−s

)
.

Proof. If we expand the RHS for all of the primes up to x we get∏
p≤x

(
1

1− p−s

)
=
∏
p≤x

(
1 +

1

ps
+

1

p2s
+ . . .

)
.

The product on the right is a finite product, over finitely many primes,
of absolutely convergent geometric series. Thus we may rearrange the
terms of the sum in any convenient order. If we expand the product
we then get ∏

p≤x

(
1

1− p−s

)
=

∑
k:p|k =⇒ p≤x

1

ks

=
∑
k≤x

1

ks
+

∑
k>x:p|k =⇒ p≤x

1

ks

= Σ1(x) + Σ2(x).

As the series
∞∑
k=1

1

ks

converges, it follows that Σ1(x) converges to ζ(s) and Σ2(x) tends to
zero. �

Euler implicitly used the Riemann zeta-function to show that there
are infinitely many primes by showing that the sum behind the LHS of
(9.2) diverges at s = 1 (one can make this argument rigorous by taking
the limit as s approaches one from above).

Dirichlet used the Riemann zeta-function to show that there are
infinitely many primes in the arithmetic progression an+ b if and only
if a and b are coprime. We will do the special case a = 4 and b = 1, we
will show there are infinitely many primes of the form 4n+ 1.
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In fact he introduced the notion of an L-function

L(s) =
∞∑
k=1

ak
ks

also known as a Dirichlet series.
We will need a simple variant on the Jacobi symbol

(−1/k) =

{
0 if 2|k
(−1)(k−1)/2 k is odd.

We can use this to define define an L-function,

L(s) =
∞∑
k=1

(−1/k)

ks
= 1− 1

3s
+

1

5s
− 1

7s
+ . . . .

Note that (−1/p) = 1 if and only if p ≡ 1 mod 4, and so it is not
so surprising that the Jacobi symbol turns up. Note that (−1/k) is
totally multiplicative, so that

(−1/kl) = (−1/k)(−1/l),

for all natural numbers k and l. It follows that if k = pe11 p
e2
2 . . . perr is

the prime factorisation of n then

(−1/n) = (−1/p1)
e1(−1/p2)

e2 . . . (−1/pr)
er .

We have a simple generalisation of (9.2):

Lemma 9.3. If ak is a totally multiplicative sequence of numbers (mean-
ing that the function k −→ ak is totally multiplicative) and the series∑

akk
−s

converges absolutely for s > s0 then∑ ak
ks

=
∏
p

(
1− ap

ps

)−1
for s > s0.

Proof. If we expand the RHS for all of the primes up to x we get∏
p≤x

(
1− ap

ps

)−1
=
∏
p≤x

(
1 +

ap
ps

+
a2p
p2s

+ . . .

)
.

The product on the right is a finite product, over finitely many primes,
of absolutely convergent geometric series. Thus we may rearrange the
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terms of the sum in any convenient order. If we expand the product
we then get ∏

p≤x

(
1− ap

ps

)−1
=

∑
k:p|k =⇒ p≤x

ak
ks

=
∑
k≤x

ak
ks

+
∑

k>x:p|k =⇒ p≤x

ak
ks

= Σ1(x) + Σ2(x).

As the series
∞∑
k=1

ak
ks

converges, it follows that Σ1(x) converges to ζ(s) and Σ2(x) tends to
zero. �

Here is a simple case of Dirichlet’s theorem:

Theorem 9.4. There are infinitely many primes q of the form 4k+ 1;
in fact there are so many that

lim
s→1+

∏
q

(1− q−s)−1 =∞.

Proof. We need to understand the behaviour of ζ(s) as s approaches 1
from above. We are going to apply the summation formula, (6.4), to

λn = n, cn = 1 and f(t) =
1

xs
.

We have, for s > 1,∑
k≤x

1

ks
=
xxy
xs

+ s

∫ x

1

xty
ts+1

dt

=
xxy
xs

+ s

∫ x

1

t− { t }
ts+1

dt

=
xxy
xs

+
s

s− 1
(1− x1−s)− s

∫ x

1

{ t }
ts+1

dt.

If we take the limit as x tends to infinity then we get

ζ(s) =
s

s− 1
− s

∫ ∞
1

{ t }
ts+1

dt.

In fact the integral converges for s > 0. It follows that

lim
s→1+

(s− 1)ζ(s) = 1 so that lim
s→1+

ζ(s) =∞.
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It is convenient to let q run over the primes congruent to 1 modulo
4 and for r to run over the primes congruent to −1 modulo 4. Since
L(s) is represented by a series that is absolutely convergent for s > 1
we have

L(s) =
∏
p

(
1− (−1/p)

ps

)−1
=
∏
q

(
1− 1

qs

)−1
·
∏
r

(
1 +

1

rs

)−1
.

Now consider the product ζ(s)L(s). We have already shown that we
can factor this into a product

ζ(s)L(s) =

(
1− 1

2s

)−1∏
q

(
1− 1

qs

)−2
·
∏
r

(
1− 1

r2s

)−1
,

valid for s > 1. Consider what happens as s approaches 1 from above.
First the RHS. The first term approaches(

1− 1

2

)−1
= 2.

For the last term we have

0 <
∏
r

(
1− 1

r2s

)−1
<
∏
r

(
1− 1

r2

)−1
<
∏
p

(
1− 1

p2

)−1
= ζ(2).

Thus the last term is bounded. We want the middle term to go to
infinity, so that the RHS goes to infinity.

Now consider the LHS. We already showed that ζ(s) goes to infinity.
So if we can show that

lim
s→1+

L(s) 6= 0

then the LHS goes to infinity, which forces the RHS to go to infinity.
We will show that L(s) is continuous at s = 1 so that it suffices

to show that L(1) 6= 0. Recall that the series
∑
uk(s) is continuous,

if u1, u2, . . . are continuous on a closed interval I and they converge
uniformly on the interval I to the sum.
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In our case

uk(s) =
1

ks
,

are continuous on the whole s-axis and so we just need to check uni-
formity on closed intervals [s1, s2], where s1 > 0.

We have to show that given ε > 0 there is an m0 such that∣∣∣∣∣
n∑

k=m

(−1/k)

ks

∣∣∣∣∣ < ε

for all m > m0 and every s ∈ I.
The idea is to apply Abel’s partial summation formula. Note first

that ∣∣∣∣∣
n∑

k=m

(−1/k)

∣∣∣∣∣ ≤ 1,

regardless of m and n. If we put Am−1 = 0 and

Ak =
k∑

l=m

(−1/l)

for k ≥ m then∣∣∣∣∣
n∑

k=m

(−1/k)

ks

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=m

Ak − Ak−1

ks

∣∣∣∣∣
=

∣∣∣∣∣
n∑

k=m

Ak(k−s − (k + 1)−s) + An(n+ 1)−s − Am−1m
−s

∣∣∣∣∣
≤

n∑
k=m

(k−s − (k + 1)−s) + (n+ 1)−s

= m−s

≤ m−s1 .

On the other hand, m−s1 < ε for all m sufficiently large.
Finally, note that

L(1) = 1− 1/3 + 1/5− 1/7 + 1/9 + . . .

= (1− 1/3) + (1/5− 1/7) + (1/9− 1/11) + . . .

> 2/3. �
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