8. Better bounds

Theorem 8.1. There are positive constants c_{3} and c_{4} such that

$$
c_{3} r \log r<p_{r}<c_{4} r \log r,
$$

for $r>1$.
Proof. If we apply (7.1) with $x=p_{r}$ then we get

$$
c_{1} \frac{p_{r}}{\log p_{r}}<r<c_{2} \frac{p_{r}}{\log p_{r}}
$$

The second inequality gives

$$
\begin{aligned}
p_{r} & >c_{3} r \log p_{r} \\
& >c_{3} r \log r
\end{aligned}
$$

for all r. For the first inequality we get

$$
\frac{\log p_{r}}{\sqrt{p_{r}}}<c_{1}<\frac{r \log p_{r}}{p_{r}}
$$

since the LHS tends to zero. Since the first term is less than the third, it follows that $p_{r}<r^{2}$, so that $\log p_{r}<2 r$. Therefore

$$
p_{r}<\frac{1}{c_{1}} r \cdot 2 \log r,
$$

for r sufficiently large. Thus $p_{r}<c_{4} r \log r$ for all $r>1$.
Theorem 8.2. We have

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

Furthermore, there is a constant C such that

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+C+O\left(\frac{1}{\log x}\right)
$$

Proof. In the course of the proof of (6.3) we showed

$$
n \sum_{p \leq x} \frac{\log p}{p}=n \log n+O(n)+O(\pi(n) \log n)
$$

Dividing by n gives the first result.

For the second result, following the course of the proof of (6.5), and using the better bound for the first sum, we get

$$
\begin{aligned}
\sum_{p \leq x} \frac{1}{p} & \leq \frac{1}{\log x}(\log x+O(1))+\int_{2}^{x} \log t \frac{\mathrm{~d} t}{t \log ^{2} t}+\int_{2}^{x}\left(\sum_{p \leq t} \frac{\log p}{p}-\log t\right) \frac{\mathrm{d} t}{t \log ^{2} t} \\
& =1+O\left(\frac{1}{\log x}\right)+\log \log x-\log \log 2 \\
& +\int_{2}^{\infty}\left(\sum_{p \leq t} \frac{\log p}{p}-\log t\right) \frac{\mathrm{d} t}{t \log ^{2} t}+\int_{x}^{\infty} \frac{O(1) \mathrm{d} t}{t \log ^{2} t}
\end{aligned}
$$

The first integral converges, as

$$
\int_{2}^{\infty} \frac{\mathrm{d} t}{t \log ^{2} t}
$$

is a convergent integral and the second integral is

$$
O\left(\frac{1}{\log x}\right)
$$

