8. BETTER BOUNDS

Theorem 8.1. There are positive constants cz and c4 such that
csrlogr < p, < eyrlogr,
forr >1.

Proof. If we apply (7.1) with z = p, then we get
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The second inequality gives

pr > c3rlogp,
> cgrlogr,

for all r. For the first inequality we get
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since the LHS tends to zero. Since the first term is less than the third,
it follows that p, < r%, so that log p, < 2r. Therefore
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pr < —1r-2logr,
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for r sufficiently large. Thus p, < ¢4rlogr for all r > 1. U

Theorem 8.2. We have
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Z 8P _ logz + O(1).
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Furthermore, there is a constant C such that
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Proof. In the course of the proof of (6.3) we showed
1
nz 08P _ nlogn + O(n) + O(m(n)logn).
p<z

Dividing by n gives the first result.
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For the second result, following the course of the proof of (6.5), and

using the better bound for the first sum, we get
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The first integral converges, as
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is a convergent integral and the second integral is
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