7. True order of $\pi(x)$

Theorem 7.1. There are positive constants c_{1} and c_{2} such that for $x \geq 2$

$$
c_{1} \frac{x}{\log x}<\pi(x)<c_{2} \frac{x}{\log x} .
$$

The prime number theorem states that in fact

$$
\pi(x) \sim \frac{x}{\log x} .
$$

Let

$$
\rho(x)=\frac{\pi(x)}{\frac{x}{\log x}}
$$

the ratio between the two functions. Using a homework problem, one can show

$$
c_{1}<\liminf \rho(x) \leq 1 \leq \lim \sup \rho(x)<c_{2} .
$$

The prime number theorem states that both the liminf and the limsup are equal to one.
(7.1) was proved by Chebyshev, who proved that $c_{1}>0.92 \ldots$ and $c_{2}<1.105 \ldots$. One can compute the constants in the proof of (7.1) and get slightly worse bounds than Chebyshev's.

Chebyshev is famous for an inequality named after him. Analysis is all about comparing different quantities. Most of the time one just applies the triangle inequality but Chebyshev's inequality is a fundamentally different type of inequality.

The idea behind the proof of (7.1) is to find an expression involving factorials such that the exponent of each prime up to n, in the prime factorisation of the expression, is close to one. We are going to take a slightly different expression than the one Chebyshev used, namely

$$
\binom{2 n}{n}=\frac{2 n!}{n!n!} .
$$

We introduce the notation

$$
f(x) \ll g(x) \quad \text { as a substitute for } \quad f(x)=O(g(x))
$$

Proof of (7.1). Pick $n \geq 2$. For each prime $p \leq 2 n$ there is a unique integer r_{p} such that

$$
p^{r_{p}} \leq 2 n<p^{r_{p}+1} .
$$

Suppose that $n<p \leq 2 n$. Then $p \mid(2 n)$! but p does not divide $n!$. Thus

$$
\left(\prod_{n<p \leq 2 n} p\right) \left\lvert\,\binom{ 2 n}{n}\right.
$$

Now suppose that $p \leq 2 n$. Then the highest power of p which divides $(2 n)$! has exponent

$$
\sum_{m=1}^{r_{p}}\left\llcorner\frac{2 n}{p^{m}}\right\lrcorner .
$$

On the other hand the highest power of p which divides $(n!)^{2}$ has exponent

$$
2 \sum_{m=1}^{r_{p}}\left\llcorner\frac{n}{p^{m}}\right\lrcorner .
$$

Thus the highest power of p which divides $\binom{2 n}{n}$ has exponent

$$
\begin{aligned}
\sum_{m=1}^{r_{p}}\left(\left\llcorner\frac{2 n}{p^{m}}\right\lrcorner-2\left\llcorner\frac{n}{p^{m}}\right\lrcorner\right) & \leq \sum_{m=1}^{r_{p}} 1 \\
& =r_{p} .
\end{aligned}
$$

It follows that

$$
\left.\binom{2 n}{n} \right\rvert\,\left(\prod_{p \leq 2 n} p^{r_{p}}\right) .
$$

Putting all of this together we have

$$
n^{\pi(2 n)-\pi(n)} \leq \prod_{n<p \leq 2 n} p \leq\binom{ 2 n}{n} \leq \prod_{p \leq 2 n} p^{r_{p}} \leq(2 n)^{\pi(2 n)}
$$

Taking logs gives

$$
(\pi(2 n)-\pi(n)) \log n \leq \log \binom{2 n}{n} \leq \pi(2 n) \log (2 n)
$$

Now

$$
\begin{aligned}
\binom{2 n}{n} & \leq \sum_{k=0}^{2 n}\binom{2 n}{k} \\
& =2^{2 n}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\binom{2 n}{n} & =\frac{(n+1) \cdot(n+2) \ldots 2 n}{1 \cdot 2 \cdot 3 \ldots n} \\
& =\prod_{a=1}^{n} \frac{n+a}{a} \\
& \geq \prod_{a=1}^{n} 2 \\
& =2^{n} .
\end{aligned}
$$

It follows that

$$
(\pi(2 n)-\pi(n)) \log n \leq 2 n \log 2
$$

and

$$
\pi(2 n) \log 2 n \geq n \log 2
$$

Thus

$$
\pi(2 n) \gg \frac{n}{\log n}
$$

Thus

$$
\begin{aligned}
\pi(x) & \geq \pi\left(2\left\llcorner\frac{x}{2}\right\lrcorner\right) \\
& \gg \frac{\llcorner x / 2\lrcorner}{\log \llcorner x / 2\lrcorner} \\
& \gg \frac{x}{\log x} .
\end{aligned}
$$

As $\pi(x) \geq 1$ for $x \geq 2$, it follows that

$$
\pi(x)>c_{1} \frac{x}{\log x}
$$

for $x \geq 2$.
On the other hand, if $y \geq 4$, we have

$$
\begin{aligned}
\pi(y)-\pi(y / 2) & =\pi(y)-\pi\left(\left\llcorner\frac{y}{2}\right\lrcorner\right) \\
& \leq 1+\pi\left(2\left\llcorner\frac{y}{2}\right\lrcorner\right)-\pi\left(\left\llcorner\frac{y}{2}\right\lrcorner\right) \\
& \ll \frac{\left\llcorner\frac{y}{2}\right\lrcorner}{\log \left\llcorner\frac{y}{2}\right\lrcorner} \\
& \ll \frac{y}{\log y} .
\end{aligned}
$$

It follows that

$$
\pi(y)-\pi(y / 2) \leq c \frac{y}{\log y}
$$

for $y \geq 2$, since it is easy to see the inequality holds over the range $2 \leq y \leq 4$. As

$$
\pi(y / 2) \leq y / 2
$$

we get

$$
\begin{aligned}
\pi(y) \log y-\pi\left(\frac{y}{2}\right) \log \frac{y}{2} & =\left(\pi(y)-\pi\left(\frac{y}{2}\right)\right) \log y+\pi\left(\frac{y}{2}\right) \log 2 \\
& <c \frac{y}{\log y} \cdot \log y+\frac{y}{2} \\
& <c^{\prime} y
\end{aligned}
$$

If $m \geq 0$ is an integer such that

$$
y=\frac{x}{2^{m}} \quad \text { with } \quad 2^{m} \leq \frac{x}{2}
$$

then we get

$$
\pi\left(\frac{x}{2^{m}}\right) \log \frac{x}{2^{m}}-\pi\left(\frac{x}{2^{m+1}}\right) \log \frac{x}{2^{m+1}}<c^{\prime} \frac{x}{2^{m}}
$$

Summing over all such m we get

$$
\pi(x) \log x-\pi\left(\frac{x}{2^{\mu+1}}\right) \log \frac{x}{2^{\mu+1}}<2 c^{\prime} x
$$

where μ is defined by the inequalities

$$
2^{\mu} \leq \frac{x}{2}<2^{\mu+1}
$$

It follows that

$$
\frac{x}{2^{\mu+1}}<2
$$

so that

$$
\pi\left(\frac{x}{2^{\mu+1}}\right)=0
$$

Thus

$$
\pi(x) \log x<c_{2} x
$$

We end with some parenthetical remarks about the liminf and limsup. It is probably easiest to work only with sequences.

Let a_{1}, a_{2}, \ldots be a squence of real numbers. We define two auxiliary sequinces b_{1}, b_{2}, \ldots and c_{1}, c_{2}, \ldots associated to a_{1}, a_{2}, \ldots.

$$
b_{i}=\inf _{j \geq i} a_{j} \quad \text { and } \quad c_{i}=\sup _{j \geq i} a_{j} .
$$

Example 7.2. Suppose that a_{1}, a_{2}, \ldots is the sequence

$$
a_{n}= \begin{cases}1 & \text { if } n \text { is odd } \\ -1 & \text { if } n \text { is even } .\end{cases}
$$

Then $b_{n}=-1$ and $c_{n}=1$ are constant sequences.

Example 7.3. Suppose that a_{1}, a_{2}, \ldots is the sequence

$$
a_{n}= \begin{cases}\frac{1}{n} & \text { if } n \text { is odd } \\ -\frac{1}{n} & \text { if } n \text { is even } .\end{cases}
$$

Then

$$
\begin{aligned}
b_{1}, b_{2}, \ldots=-1 / 2,-1 / 2,-1 / 4,-1 / 4,-1 / 6,-1 / 6, \ldots & \text { and } \\
& c_{1}, c_{2}, \ldots=1,1 / 3,1 / 3,1 / 5,1 / 5,1 / 7, \ldots .
\end{aligned}
$$

Example 7.4. Let a_{1}, a_{2}, \ldots be the sequence $a_{n}=n$.
Then $b_{n}=n$ and $c_{n}=\infty$.
Definition-Proposition 7.5. The limit (possibly infinite) b and c of the sequences b_{1}, b_{2}, \ldots and c_{1}, c_{2}, \ldots exist; $b=\liminf a_{n}$ is called the liminf and $c=\lim \inf a_{n}$ is called the limsup.
a_{1}, a_{2}, \ldots converges if and only if $b=c$ in which case $a=\lim a_{n}=b$.
Proof. Note that

$$
\begin{aligned}
b_{n} & =\inf _{m \geq n} a_{m} \\
& =\min \left(a_{n}, \inf _{m \geq n+1} a_{m}\right) \\
& =\min \left(a_{n}, b_{n+1}\right) \\
& \leq b_{n+1} .
\end{aligned}
$$

Thus b_{1}, b_{2}, \ldots is monotonic increasing. By symmetry, c_{1}, c_{2}, \ldots is monotonic decreasing. Thus the limits exist.

Note that from $b_{n} \leq \min \left(a_{n}, b_{n+1}\right)$ one gets by symmetry

$$
b_{n} \leq a_{n} \leq c_{n}
$$

Thus if $b=c$ then a_{1}, a_{2}, \ldots converges to b.
Now suppose that a_{1}, a_{2}, \ldots converges to a. Fix $\epsilon>0$. Then we may find $n \geq n_{0}$ such that $\left|a_{n}-a\right|<\epsilon$ for all $n \geq n_{0}$. In particular $a_{n}>a-\epsilon$. Therefore $b_{n} \geq a-\epsilon$ and so b_{1}, b_{2}, \ldots converges to a. By symmetry, c_{1}, c_{2}, \ldots converges to a.

