
7. True order of π(x)

Theorem 7.1. There are positive constants c1 and c2 such that for
x ≥ 2

c1
x

log x
< π(x) < c2

x

log x
.

The prime number theorem states that in fact

π(x) ∼ x

log x
.

Let

ρ(x) =
π(x)
x

log x

,

the ratio between the two functions. Using a homework problem, one
can show

c1 < lim inf ρ(x) ≤ 1 ≤ lim sup ρ(x) < c2.

The prime number theorem states that both the liminf and the limsup
are equal to one.

(7.1) was proved by Chebyshev, who proved that c1 > 0.92 . . . and
c2 < 1.105 . . . . One can compute the constants in the proof of (7.1)
and get slightly worse bounds than Chebyshev’s.

Chebyshev is famous for an inequality named after him. Analysis
is all about comparing different quantities. Most of the time one just
applies the triangle inequality but Chebyshev’s inequality is a funda-
mentally different type of inequality.

The idea behind the proof of (7.1) is to find an expression involving
factorials such that the exponent of each prime up to n, in the prime
factorisation of the expression, is close to one. We are going to take a
slightly different expression than the one Chebyshev used, namely(

2n

n

)
=

2n!

n!n!
.

We introduce the notation

f(x)� g(x) as a substitute for f(x) = O(g(x)).

Proof of (7.1). Pick n ≥ 2. For each prime p ≤ 2n there is a unique
integer rp such that

prp ≤ 2n < prp+1.

Suppose that n < p ≤ 2n. Then p|(2n)! but p does not divide n!. Thus( ∏
n<p≤2n

p

)∣∣∣∣(2n

n

)
.
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Now suppose that p ≤ 2n. Then the highest power of p which divides
(2n)! has exponent

rp∑
m=1

x
2n

pm
y.

On the other hand the highest power of p which divides (n!)2 has ex-
ponent

2

rp∑
m=1

x
n

pm
y.

Thus the highest power of p which divides
(
2n
n

)
has exponent

rp∑
m=1

(
x

2n

pm
y− 2x

n

pm
y

)
≤

rp∑
m=1

1

= rp.

It follows that (
2n

n

) ∣∣∣∣∣
(∏
p≤2n

prp

)
.

Putting all of this together we have

nπ(2n)−π(n) ≤
∏

n<p≤2n

p ≤
(

2n

n

)
≤
∏
p≤2n

prp ≤ (2n)π(2n).

Taking logs gives

(π(2n)− π(n)) log n ≤ log

(
2n

n

)
≤ π(2n) log(2n).

Now (
2n

n

)
≤

2n∑
k=0

(
2n

k

)
= 22n.

2



On the other hand (
2n

n

)
=

(n+ 1) · (n+ 2) . . . 2n

1 · 2 · 3 . . . n

=
n∏
a=1

n+ a

a

≥
n∏
a=1

2

= 2n.

It follows that
(π(2n)− π(n)) log n ≤ 2n log 2

and
π(2n) log 2n ≥ n log 2.

Thus

π(2n)� n

log n
.

Thus

π(x) ≥ π(2x
x

2
y)

� xx/2y
logxx/2y

� x

log x
.

As π(x) ≥ 1 for x ≥ 2, it follows that

π(x) > c1
x

log x

for x ≥ 2.
On the other hand, if y ≥ 4, we have

π(y)− π(y/2) = π(y)− π(x
y

2
y)

≤ 1 + π(2x
y

2
y)− π(x

y

2
y)

�
xy
2
y

logxy
2
y

� y

log y
.

It follows that

π(y)− π(y/2) ≤ c
y

log y
,
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for y ≥ 2, since it is easy to see the inequality holds over the range
2 ≤ y ≤ 4. As

π(y/2) ≤ y/2

we get

π(y) log y − π
(y

2

)
log

y

2
=
(
π(y)− π

(y
2

))
log y + π

(y
2

)
log 2

< c
y

log y
· log y +

y

2

< c′y.

If m ≥ 0 is an integer such that

y =
x

2m
with 2m ≤ x

2
then we get

π
( x

2m

)
log

x

2m
− π

( x

2m+1

)
log

x

2m+1
< c′

x

2m
.

Summing over all such m we get

π(x) log x− π
( x

2µ+1

)
log

x

2µ+1
< 2c′x,

where µ is defined by the inequalities

2µ ≤ x

2
< 2µ+1.

It follows that
x

2µ+1
< 2,

so that

π
( x

2µ+1

)
= 0.

Thus
π(x) log x < c2x. �

We end with some parenthetical remarks about the liminf and lim-
sup. It is probably easiest to work only with sequences.

Let a1, a2, . . . be a squence of real numbers. We define two auxiliary
seqeunces b1, b2, . . . and c1, c2, . . . associated to a1, a2, . . . .

bi = inf
j≥i

aj and ci = sup
j≥i

aj.

Example 7.2. Suppose that a1, a2, . . . is the sequence

an =

{
1 if n is odd

−1 if n is even.

Then bn = −1 and cn = 1 are constant sequences.
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Example 7.3. Suppose that a1, a2, . . . is the sequence

an =

{
1
n

if n is odd

− 1
n

if n is even.

Then

b1, b2, . . . = −1/2,−1/2,−1/4,−1/4,−1/6,−1/6, . . . and

c1, c2, . . . = 1, 1/3, 1/3, 1/5, 1/5, 1/7, . . . .

Example 7.4. Let a1, a2, . . . be the sequence an = n.

Then bn = n and cn =∞.

Definition-Proposition 7.5. The limit (possibly infinite) b and c of
the sequences b1, b2, . . . and c1, c2, . . . exist; b = lim inf an is called the
liminf and c = lim inf an is called the limsup.
a1, a2, . . . converges if and only if b = c in which case a = lim an = b.

Proof. Note that

bn = inf
m≥n

am

= min(an, inf
m≥n+1

am)

= min(an, bn+1)

≤ bn+1.

Thus b1, b2, . . . is monotonic increasing. By symmetry, c1, c2, . . . is
monotonic decreasing. Thus the limits exist.

Note that from bn ≤ min(an, bn+1) one gets by symmetry

bn ≤ an ≤ cn.

Thus if b = c then a1, a2, . . . converges to b.
Now suppose that a1, a2, . . . converges to a. Fix ε > 0. Then we

may find n ≥ n0 such that |an − a| < ε for all n ≥ n0. In particular
an > a − ε. Therefore bn ≥ a − ε and so b1, b2, . . . converges to a. By
symmetry, c1, c2, . . . converges to a. �
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