6. Sums involving Primes

Lemma 6.1. If $t>-1$ is a non-zero real number then

$$
\frac{t}{1+t}<\log (1+t)<t
$$

In particular if $t \in(0,1 / 2]$ then

$$
\log (1-t)>-2 t
$$

Proof. Let

$$
f:(-1, \infty) \longrightarrow \mathbb{R}
$$

be the function

$$
f(u)=\log (1+u)
$$

Then f is continuous and differentible, so that by the mean value theorem we may find

$$
s \in \begin{cases}{[0, t]} & \text { if } t>0 \\ {[t, 0]} & \text { if } t<0\end{cases}
$$

such that

$$
\begin{aligned}
\frac{1}{1+s} & =f^{\prime}(s) \\
& =\frac{f(t)-f(0)}{t-0} \\
& =\frac{\log (1+t)-\log 1}{t-0} \\
& =\frac{\log (1+t)}{t}
\end{aligned}
$$

It follows that

$$
\log (1+t)=\frac{t}{1+s}
$$

Now use the fact that the RHS is a decreasing function of s, if $t>0$ and an increasing function of s, if $t<0$ to get the first inequality.

Now suppose that $t \in(0,1 / 2]$, so that $-t \in[-1 / 2,0)$. As $-t \geq$ $-1 / 2,1-t \geq 1 / 2$ and so

$$
\begin{aligned}
\log (1-t) & >\frac{-t}{1-t} \\
& \geq-2 t
\end{aligned}
$$

Theorem 6.2.

$$
\sum_{p \leq x} \frac{1}{p}>\frac{1}{2} \log \log x
$$

In particular

$$
\sum_{p} \frac{1}{p}
$$

diverges.
Proof. We start with the inequality of (5.1),

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)<\frac{1}{\log x}
$$

If we take logs of both sides, we get

$$
\begin{aligned}
\sum_{p \leq x} \log \left(1-\frac{1}{p}\right) & =\log \prod_{p \leq x}\left(1-\frac{1}{p}\right) \\
& <\log \frac{1}{\log x} \\
& =-\log \log x
\end{aligned}
$$

Now (6.1) implies that

$$
\left(1-\frac{1}{p}\right)>\frac{-2}{p}
$$

for every prime p and so

$$
\sum_{p \leq x} \frac{2}{p}>\log \log x
$$

Theorem 6.3.

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O\left(\frac{\log x}{\log \log x}\right)
$$

Proof. We saw in (3.3) that if we write $n=p^{r} m$, where m is coprime to p, then

$$
r=\left\llcorner\frac{n}{p}\right\lrcorner+\left\llcorner\frac{n^{2}}{p}\right\lrcorner+\left\llcorner\frac{n^{3}}{p}\right\lrcorner+\ldots
$$

It follows that

$$
n!=\prod_{p \leq n} p^{\left\llcorner\frac{n}{p}\right\lrcorner+\left\llcorner\frac{n}{p}{ }^{2}\right\lrcorner+\left\llcorner\frac{n}{p} 3++\ldots\right.},
$$

so that

$$
\log n!=\sum_{p \leq n}\left(\left\llcorner\frac{n}{p}\right\lrcorner+\left\llcorner\frac{n}{p^{2}}\right\lrcorner+\left\llcorner\frac{n}{p^{3}}\right\lrcorner+\ldots\right) \log p
$$

For the first term in every sum on the RHS we have

$$
\sum_{p \leq n}\left\llcorner\frac{n}{p}\right\lrcorner \log p \leq \sum_{p \leq n} \frac{n}{p} \log p .
$$

On the other hand,

$$
\begin{aligned}
\sum_{p \leq n}\left\llcorner\frac{n}{p}\right\lrcorner \log p & \geq \sum_{p \leq n}\left(\frac{n}{p}-1\right) \log p \\
& =\sum_{p \leq n} \frac{n}{p} \log p-\sum_{p \leq n} \log p \\
& \geq \sum_{p \leq n} \frac{n}{p} \log p-\log n \sum_{p \leq n} 1 . \\
& =\sum_{p \leq n} \frac{n}{p} \log p-\pi(n) \log n .
\end{aligned}
$$

Note that

$$
\sum_{p \leq n}\left(\left\llcorner\frac{n}{p^{2}}\right\lrcorner+\left\llcorner\frac{n}{p^{3}}\right\lrcorner+\ldots\right) \log p \leq \sum_{p \leq n}\left(\frac{n}{p^{2}}+\frac{n}{p^{3}}+\ldots\right) \log p
$$

Thus

$$
\begin{aligned}
\log n! & =\sum_{p \leq x} \frac{n}{p} \log p+O(\pi(n) \log n)+O\left(n \sum_{p \leq n}\left(\frac{1}{p^{2}}+\frac{1}{p^{3}}+\ldots\right) \log p\right) \\
& =n \sum_{p \leq x} \frac{\log p}{p}+O(\pi(n) \log n)+O\left(n \sum_{p \leq n} \frac{\log p}{p(p-1)}\right) .
\end{aligned}
$$

Since the series

$$
\sum_{k=1}^{\infty} \frac{\log k}{k(k-1)}
$$

converges, we get

$$
\log n!=n \sum_{p \leq x} \frac{\log p}{p}+O(\pi(n) \log n)+O(n)
$$

However it is shown in a homework problem that

$$
\log n!=n \log n+O(n)
$$

Putting all of this together we get

$$
n \sum_{p \leq x} \frac{\log p}{p}=n \log n+O(n)+O(\pi(n) \log n)
$$

But by (5.2)

$$
\pi(n)=O\left(\frac{n}{\log \log n}\right)
$$

Dividing through by n we get

$$
\sum_{p \leq x} \frac{\log p}{p}=\log n+O\left(\frac{\log n}{\log \log n}\right)
$$

This establishes the result when $x=n$ is an integer. As

$$
\log x=\log \llcorner x\lrcorner+O(1)
$$

the result holds for any x.
We will need the following result, which is obtained using integration by parts.

Theorem 6.4 (Summation formula). Suppose that $\lambda_{1}, \lambda_{2}, \ldots$ is a sequence of reals such that

$$
\lambda_{1} \leq \lambda_{2} \leq \ldots
$$

and the limit is infinity. Let c_{1}, c_{2}, \ldots be any sequence of complex numbers and let $f(x)$ be a function whose derivative is continuous for $x \geq \lambda_{1}$.

If

$$
C(x)=\sum_{\lambda_{n} \leq x} c_{n}
$$

where the sum is over all n such that $\lambda_{n} \leq x$, then

$$
\sum_{\lambda_{n} \leq x} c_{n} f\left(\lambda_{n}\right)=C(x) f(x)-\int_{\lambda_{1}}^{x} C(t) f^{\prime}(t) \mathrm{d} t
$$

Proof. If ν is the largest index such that $\lambda_{\nu} \leq x$, we have

$$
\begin{aligned}
\sum_{\lambda_{n} \leq x} c_{n} f\left(\lambda_{n}\right) & =C\left(\lambda_{1}\right) f\left(\lambda_{1}\right)+\left(C\left(\lambda_{2}\right)-C\left(\lambda_{1}\right)\right) f\left(\lambda_{2}\right)+\cdots+\left(C\left(\lambda_{\nu}\right)-C\left(\lambda_{\nu-1}\right)\right) f\left(\lambda_{n}\right) \\
& =C\left(\lambda_{1}\right)\left(f\left(\lambda_{1}\right)-f\left(\lambda_{2}\right)\right)+\cdots+C\left(\lambda_{\nu-1}\right)\left(f\left(\lambda_{\nu}\right)-f(x)\right)+C\left(\lambda_{\lambda_{\nu}}\right) f(x) \\
& =-\int_{\lambda_{1}}^{x} C(t) f^{\prime}(t) \mathrm{d} t+C(x) f(x)
\end{aligned}
$$

since $C(t)$ is constant over the intervals $\left(\lambda_{i-1}, \lambda_{i}\right)$ and $\left(\lambda_{\nu}, x\right)$.

Theorem 6.5.

$$
\sum_{p \leq x} \frac{1}{p} \sim \log \log x
$$

Proof. We are going to apply (6.4) to

$$
\lambda_{n}=p_{n}, \quad c_{n}=\frac{\log p_{n}}{p_{n}} \quad \text { and } \quad f(t)=\frac{1}{\log t}
$$

We have

$$
\begin{aligned}
\sum_{p \leq x} \frac{1}{p} & =\sum_{2<p<x}\left(\frac{\log p}{p} \cdot \frac{1}{\log p}\right)+\frac{1}{2} \\
& =\frac{1}{\log x} \sum_{2<p<x} \frac{\log p}{p}-\int_{3}^{x}\left(\sum_{p \leq t} \frac{\log p}{p}\right) \frac{-\mathrm{d} t}{t \log ^{2} t}+O(1) \\
& =\frac{1}{\log x}\left(\log x+O\left(\frac{\log x}{\log \log x}\right)\right)+\int_{3}^{x}\left(\log t+O\left(\frac{\log t}{\log \log t}\right)\right) \frac{\mathrm{d} t}{t \log ^{2} t}+O(1) \\
& =\int_{3}^{x} \frac{\mathrm{~d} t}{t \log t}+\int_{3}^{x} O\left(\frac{1}{t \log t \log \log t}\right) \mathrm{d} t+O(1) \\
& =\log \log x+\int_{3}^{x} O\left(\frac{1}{t \log t \log \log t}\right) \mathrm{d} t+O(1)
\end{aligned}
$$

For the last term there is some constant M such that

$$
\begin{aligned}
\left|\int_{3}^{x} O\left(\frac{1}{t \log t \log \log t}\right) \mathrm{d} t\right| & \leq M \int_{3}^{x} \frac{\mathrm{~d} t}{t \log t \log \log t} \\
& =M \log \log \log x+O(1)
\end{aligned}
$$

It follows that

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+O(\log \log \log x)
$$

